• Title/Summary/Keyword: fiber elements

Search Result 427, Processing Time 0.024 seconds

Fabrication and Transmission Experiment of the Distributed Feedback Laser Diode(DFB-LD) Module for 2.5Gbps Optical Telecommunication System (2.5Gbps 광통신용 distrbuted feedback laser diode(DFB-LD) 모듈 제작 및 광송신 실험)

  • 박경현;강승구;송민규;이중기;조호성;장동훈;박찬용;김정수;김홍만
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 1994
  • We designed and fabricated the single mode fiber pigtailed DFB-LD module for 2.5 Gbps optical communication system. In the design of the DFB-LD module, we made the module divided into two parts of inner sub-module and outer 14-pin butterfly package and cylindrical shaped sub-module contain quasi confocal 2 lens system including optical isolator and electrical connection between these parts via hybrid substrate of bias T circuit. Laser welding was used to assemble the sub-module which requires accurate fixing between optical elements. The fabricated DFB-LD module showed optical coupling efficiency of 20% and - 3 dB small signal response of more than 2.6 GHz. We confirmed mechanical reliability of the module by temperature cycle test where the tested module exhibit optical power fluctuation of less than 10%. Finally we evaluated the performance of the fabricated DFB-LD module as light source of 2.5 Gbps optical communication system, sensitivity of - 30.2 dBm was obtained through 47 km optical fiber transmission under the criterion of $1\times10^{-10}$ BER and transmission penalties were 1.5 dB caused by extinction ratio and 1.0 dB caused by chromatic dispersion of normal single mode fiber. fiber.

  • PDF

A Study on the Five Colors Appearing in the Traditional Korean Bojaki of the Era of Chosun Dynasty (조선시대 보자기에 나타나는 오방색에 관한 고찰)

  • Noh Eun-Hee
    • Journal of Science of Art and Design
    • /
    • v.6
    • /
    • pp.81-99
    • /
    • 2004
  • For making something to use as a tool since the emergence of mankind, the initial pragmatic purpose has transformed into a new genre of art over time. Things defined like this have rooted in our culture as tradition so far. In the midst of today's various trends, a reflection of tradition and a modern search for tradition by re-creating it are much more needed. To any people in any time, a new trend would undeniably develop on the basis of its previous tradition in any form. The colors appearing in such artwork are also an expression of each people's unconscious potentiality as essential grounds for human aesthetic. The traditional Korean Bojaki, which was made out of women's pragmatic mind trying to recycle trashy pieces of cloth in the 19th century of Chosun Dynasty, appears as a symbolization of our nation's original form in unconsciousness. It includes Confucianism, Buddhism, Zen and the Yin-Yang and Five Elements thought, which have been together with naturalism. The five colors appearing in the Yin-Yang and Five Elements are the basis. Fourteen selected samples around the five colors seen in the color scheme of the Chosun era's Bojaki were measured and their color values were found by analyzing them based on HCV(Hue, Chroma, Value)of the five primary colors as well as the five secondary colors. After choosing a few colors with bare eyes close to traditional Primary Colors and Secondary Colors amongst 14 pieces of data which particularly used traditional Five Colors and examining them using spectrophotometer(JX777), the following conclusions were drawn. Comparing only colors in Primary Colors, the result was red 7.11R 4.59/10.69, blue 6.71PB 3.18/6.45, yellow 3.91Y 7.56/6.12, respectively. With regard to Secondary Colors, it was reported that red 7.96RP 5.42/10.3, blue 7.8B 5.16/5.53, green 8.03GY 6.05/4.34, yellow 2.73Y 7.47/4.07, purple 2.39RP 4.69/4.56, respectively. (diagram) As a result, the standard of Five Colors can be used in modern fiber color. There are differences in dyeing material, methods and kinds of fiber of that time, but women of Chosun Dynasty combined and made fabric which was circulated. Consequently, an applicable attribute of the aye-color values was considered.

  • PDF

Static performance of a new GFRP-metal string truss bridge subjected to unsymmetrical loads

  • Zhang, Dongdong;Yuan, Jiaxin;Zhao, Qilin;Li, Feng;Gao, Yifeng;Zhu, Ruijie;Zhao, Zhiqin
    • Steel and Composite Structures
    • /
    • v.35 no.5
    • /
    • pp.641-657
    • /
    • 2020
  • A unique lightweight string truss deployable bridge assembled by thin-walled fiber reinforced polymer (FRP) and metal profiles was designed for emergency applications. As a new structure, investigations into the static structural performance under the serviceability limit state are desired for examining the structural integrity of the developed bridge when subjected to unsymmetrical loadings characterized by combined torsion and bending. In this study, a full-scale experimental inspection was conducted on a fabricated bridge, and the combined flexural-torsional behavior was examined in terms of displacement and strains. The experimental structure showed favorable strength and rigidity performances to function as deployable bridge under unsymmetrical loading conditions and should be designed in accordance with the stiffness criterion, the same as that under symmetrical loads. In addition, a finite element model (FEM) with a simple modeling process, which considered the multi segments of the FRP members and realistic nodal stiffness of the complex unique hybrid nodal joints, was constructed and compared against experiments, demonstrating good agreement. A FEM-based numerical analysis was thereafter performed to explore the effect of the change in elastic modulus of different FRP elements on the static deformation of the bridge. The results confirmed that the change in elastic modulus of different types of FRP element members caused remarkable differences on the bending and torsional stiffness of the hybrid bridge. The global stiffness of such a unique bridge can be significantly enhanced by redesigning the critical lower string pull bars using designable FRP profiles with high elastic modulus.

An optical true time delay for 10 GHz linear phased array antennas composed of optical 2×2 MEMS switches and fiber delay lines (광 2×2 MEMS 스위치와 광섬유 지연선로를 이용한 10 GHz 선형 위상배열 안테나용 광 실시간 지연선로)

  • 이백송;신종덕;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.466-472
    • /
    • 2003
  • In this paper, we proposed an optical true time-delay (TTD) feeder system for phased array antennas (PAAs). The system possesses high-speed beam scan capability since, in this scheme, different lengths of fiber delay-lines are selected by optical 2${\times}$2 MEMS switches at high speed. An optical TTD capable of beam scanning in one of eight different directions has been built for 10 GHz linear PAA systems. Experimental results on time delay measurements show that the maximum time delay error is less than 0.2 ps corresponding to a scan angle error of less than 0.84o. We have also designed a 10 GHz linear PAA composed of eight micro-strip patch antenna elements driven by the proposed TTD, and the radiation patterns of this PAA have been analyzed by simulation.

Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and High Strength Rebar (ECC와 고장력 철근으로 보강된 철근콘크리트 보의 휨 실험)

  • Cho, Hyun-Woo;Bang, Jin-Wook;Han, Byung-Chan;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 2011
  • ECC is a micro-mechanically designed cementitious composite which exhibits tightly controlled crack width and strain hardening behavior in uniaxial tension while using a moderate amount of reinforcing fiber, typically less than 2% fiber volume fraction. Recently, a variety of applications of this material ranging from repair and retrofit of structures, cast-in-place structures, to precast structural elements requiring high ductility are developed. In the present study, a retrofitting method using ECC reinforced with high strength rebar was proposed to enhance load-carrying capacity and crack control performance of deteriorated reinforced concrete (RC) beams. Six beam specimens were designed and tested under a four-point loading setup. The flexural test revealed that load-carrying capacity and crack control performance were significantly enhanced by the use of ECC and high strength rebar. This result will be useful for practical field applications of the proposed retrofitting method.

Handsheet Property Changes by Internal Addition of Surface Strength Agent (표면강도 향상제 내첨에 따른 수초지 특성 변화)

  • Lim, Jong-Hyck;Jung, Chul-Hun;Chae, Hee-Jae;Park, Chang-Soon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.41-45
    • /
    • 2010
  • This study was performed to evaluate the effect of paper property changes by internal addition of surface strength agent on printability. Advances in printing technique has required the development of paper qualities in many aspects. Basically paper structure is composed of hydrogen bonds which induce many problems in high speed printing machine because of weak bonding strength. One of the important printing problems is surface picking when mechanical pulp or recycled pulp are used. It was caused by the ink-stained blanket in printing process because accumulations of pollutant in white water and other elements which are bonded weakly or do not have hydrogen bonds. Debris at paper surface adheres to blanket which deteriorates printing efficiency and causes various problems. To complement these problems, Pennocel 5137 of polysaccharide structure was used as an agent to improve paper's surface property, strength and printability. Paper surface picking was analyzed by RI-1 test. As the dosage amount increased tensile strength, fiber bonding strength and ZDT strength were improved. Further more formation, smoothness and surface picking resistance were improved. It was confirmed that when adding polysaccharide structure polymers to improve surface strength such as surface picking resistance, it was also possible to improve tensile strength, fiber bonding strength, formation and smoothness.

Analysis of Components of Fabrics in Fashion Trend Books - Focused on the Year 2002 through 2012 - (패션 정보지에 나타난 직물의 구성요소 분석 - 2002년~2012년을 중심으로 -)

  • Kim, Mi-Jin;Park, Myung-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.15 no.4
    • /
    • pp.129-142
    • /
    • 2013
  • Fabrics created unique features through the change in various ways depending on the elements including fabric structure, threads, thickness, weaving, patterns and processing. This study examined the difference between texture and image depending on components of fabrics. In order to understand the trend of components of fabrics, the actual components of fabrics was analyzed by year, using the women's apparel trend books, Nelly Rodi Fabrics and Promostyl Fabrics. This study analyzed Spring/Summer season and Fall/Winter season from 2002 to 2012. Frequency analysis, cross-tabulation analysis, multiple response cross tabulation analysis were implemented using SPSS 18.0. The followings are the analysis results. For fabric composition, Spring/Summer season used cotton fabric the most. Cotton fabric accounted for relatively high usage in 2005, 2007 and 2008. Fall/Winter season used wool the most in 2002, 2003, 2004 and 2005. In case of fiber blend by fabric composition, cotton was blended with other fibers in Spring/Summer season except wool. The fiber blending ratio of wool was the highest in Fall/Winter season. Wool was blended in most fabrics. More than two patterns were mixed for fabric patterns. The fabric patterns were applied the most in 2012. For fabric processing, the fabrics by sensitivity-functional processing were continuously used every year and the surface finish showed relatively high usage in 2002 and 2011. In conclusion, this study will build the systematic data for 11 years including fabric trends in the past. It can improve specialization, systematization and efficiency in fabric planning.

  • PDF

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads

  • Abderezak, Rabahi;Daouadji, Tahar Hassaine;Rabia, Benferhat;Belkacem, Adim
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Development of Element Technique for the Floating PV Generation Structure Using FRP (FRP를 활용한 수상 부유식 태양광발전 구조물의 요소기술 개발)

  • Seo, Su-Hong;Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.103-108
    • /
    • 2014
  • Fiber reinforced polymer plastic (FRP) structural members are recently available in construction industries due to various material properties such as high specific strength and stiffness, light-weight, and corrosionresistance. The floating PV generation structure can also be an illustration for applying FRP in construction applications. The floating PV generation structure has been recently issued as a representative item for the low carbon and green growth campaign and many related studies have been conducted for the structural safety and commercial viability. Moreover, the floating PV generation structures for the commercial purpose have been constructed. In this paper, the investigation and development processes of elements for the floating PV generation structure are presented during commercialization.