• Title/Summary/Keyword: fiber elements

Search Result 427, Processing Time 0.033 seconds

Evaluation of steel fiber reinforcement effect in segment lining by full scale bending test (실물파괴실험에 의한 세그먼트 라이닝의 강섬유 보강 효과 평가)

  • Lee, Gyu-Phil;Bae, Gyu-Jin;Moon, Do-Young;Kang, Tae-Sung;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • An experimental research on the possibility of using fiber reinforced concrete precast tunnel segments instead of traditional reinforced concrete(RC) segment has been performed in europe. This solution allows removing the traditional reinforcement with several advantages in terms of quality and cost reduction. Full-scale bending tests were carried out in order to compare the behaviour of the segments under flexural actions on both rebar reinforced concrete and rebar-fiber reinforced elements. The test results showed that the fiber reinforced concrete can substitute the traditional reinforcement; in particular the segment performance is improved by the fiber presence, mainly in terms of crack.

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.

A Evaluation on the Field Application of Ductile Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체의 현장 적용성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Park, Jung-Jun;Kang, Su-Tae;Kim, Sung-Wook;Park, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.941-944
    • /
    • 2008
  • Various ductile fiber reinforced cement composite(DFRCC) including large quantities of PVA fiber or steel fiber have been developed recently and studies to find applications in diverse domains are currently conducted actively. Regard to economical efficiency, DFRCC becomes competitive when applied as special elements and repair material with small quantities rather than the casting of large volume for the main body of structures in field. The authors have developed FRP-DFRCC composite slab for bridges and a wet spraying repair technique using DFRCC. In case of the application on FRP-DFRCC composite slab, it was found that there was no problems the structure and durability of it after passed 3 months. And in case of the application on the application of the deteriorated sewage box that passed 20 years, it was found that there was no difference the repair performance between domestic PVA fiber and the Japan. Therefore, DFRCC using PVA fiber, the concrete structures can be increased to performance and secured the economical efficiency.

  • PDF

A design method for optical fiber filter of lattice structure (격자형 광파이버필터의 설계에 관한 연구)

  • 이채욱;문병현;김신환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1248-1256
    • /
    • 1993
  • The propagation and delay properties in opical fiber are particularly attractive because digital signal processing and conventional analog signal processing techniques such as those using surface acoustic wave devices are limited In their usefulness for signal bandwidth exceeding one or two GHz, although they are very effective at lower frequencies. Since an accurate, low loss and short time delay elements can be obtained by using such an optical fiber, optical signal precessing has attracted much attention for high speed and broad-band signal precessing in particular channel separation filtering for optical FDM signals. In this paper, we consider a coherent optical lattice filter, which uses coherent light sources and consists of directional couplers and optical fiber delay elemnts. The optical fiber fitters are more restricted than the usual digital filters. The reasons are as follows. 1) the coupling coefficients of directional couplers are restricted to the number between 0 and 1. 2) optical signal E(complex amplitude) is divided into J If-$\boxUl$ and J L/7$\div$$\boxUl$ at the directional coupler. Considering these restrictions and in this case all the coupling coefficients of summing and branching elements are set to be equal, we have given design formulae for optical lattice filter, which make the best use of optical signal energy.

  • PDF

Seismic behavior of non-seismically designed reinforced concrete frame structure

  • Nguyen, Xuan-Huy;Nguyen, Huy Cuong
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.281-295
    • /
    • 2016
  • This paper presents a study on a non-seismically designed reinforced concrete (RC) frame structure. The structure was a existing three-story office building constructed according to the 1990s practice in Vietnam. The 1/3 scaled down versions of structure was tested on a shake table to investigate the seismic performance of this type of construction. It was found that the inter-story drift and the overall behavior of structure meet the requirements of the actual seismic design codes. Then, nonlinear time history analyses are carried out using the fiber beam- column elements. The comparison between the experimental and simulation results shows the performance of the time history analysis models.

Effective Thermal Conductivities of Fiber-Reinforce Composites Using a Thermal-Electrical Analogy (열-전기 유사성을 이용한 복합재료의 열전도도 예측)

  • 조영준;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.81-84
    • /
    • 2002
  • An approach for predicting the effective thermal conductivities of fiber-reinforce composite has been developed based on a thermal-electrical analogy. The unit cell of the composite laminate is divided into regular volume elements and the material properties have been given to each element. By constructing the series-parallel thermal resistance network, the thermal conductivities of composite both in-plane and out-of-plane direction have been predicted. Graphite/Epoxy composite is used for a balanced plain-weave composite laminate. By comparing the predicted results and the previous works, good agreement has been found.

  • PDF

Theoretical Investigations on the Copolymerization of Vinyl Pivalate and Vinyl Acetate (피발산비닐과 아세트산비닐의 공중합에 관한 이론적 고찰)

  • Ghim, Han-Do;Kim, Jae-Pil;Lyo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.29-32
    • /
    • 2002
  • Thermodynamics of copolymerization is one of the fundamental elements for studying the effects of copolymerization parameters on the copolymer characteristics. Up until now, it has not been easy work not because there are not effective models but because the known thermodynamic values are limited to some copolymer pairs. Recently, owing to the development of molecular modeling methods, some thermodynamic parameters can be calculated and estimated on computer. (omitted)

  • PDF

Internal Structure and Pigment Granules in Colored Alpaca Fibers

  • Wang Huimin;Liu Xin;Wang Xungai
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.263-268
    • /
    • 2005
  • Alpaca fibers have some distinct properties such as softness and warmth, which have not been fully understood in combination with the fiber internal structures. In the present investigation, the internal structures of alpaca fibers have been closely examined under the scanning electron microscope (SEM), especially in the longitudinal direction. The results showed that numerous pigment granules reside loosely inside pockets in brown and dark-brown alpaca fibers. These pigment granules were mainly distributed inside the cortical cells, the medullation regions as well as underneath the cuticles. Their size in the brown alpaca fibers was smaller and more uniformly round than in the dark-brown fibers. These granules in colored alpaca fibers loosen the bundle of cortical cells, providing many crannies in the fibers which may contribute to the superior flexibility, warmth and softness of the fibers. Moreover, there are no heavy metal elements found in the granules. The mordant hydrogen peroxide bleaching employed could eliminate the pigment granules and create many nano-volumes for further dyeing of fibers into more attractive colors.

OPTIMIZATION OF LAMINATED COMPOSITE FOR BUCKLING PERFORMANCE

  • Cho, Hee-Keun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.560-565
    • /
    • 2007
  • Motivated by needs such as those in the aerospace industry, this paper demonstrates ability to significantly increase buckling loads of perforated composite laminated plates by synergizing FEM and a genetic optimization algorithm (GA). Plate geometry is discretized into specially-developed 3D degenerated eight-node shell isoparametric layered composite elements. General shell theory, involving incremental nonlinear finite element equilibrium equation, is employed. Fiber orientation within individual plies of each element is controlled independently by the genetic algorithm. Eigen buckling analysis is performed using the subspace iteration method. Available results demonstrate the approach is superior to more conventional methodologies such as modifying ply thickness or the stacking sequence of individual rectilinear plies having common fiber orientation through the plate.

  • PDF

The Analysis of Fabric Impact and Consumer′s Preference for Fabric on Clothing Purchase (의류 제품 구매시 소재의 영향과 소비자 소재 선호 구조 분석)

  • 정인희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.83-94
    • /
    • 2002
  • This study was intended to identify fabric impact on decision-making process for clothing purchase, to determine evaluation factors of clothing, and to analyze consumer's preference for fabric on clothing purchase. 396 questionnaires distributed to college students were analyzed by descriptive statistics, oneway ANOVA, correlation, factor analysis and multidimensional scaling. The results are as follows; (1) Fabric impacted on the pre-purchase evaluation and the post-purchase process. (2) 4 factors - physical properties, outer-consciousness, self-satisfaction, and appropriateness- were determined as evaluation factors. Though fabric was included in the physical properties, fabric presented high correlations with other evaluative elements. (3) The most preferred fabric was being composed of natural fiber in fiber contents and having softness in sensation. As a result of multidimensional scaling, 2 dimensions of fabric sensation were developed as 'soft-hard'and 'thin-thick'.