• Title/Summary/Keyword: fiber elements

Search Result 427, Processing Time 0.026 seconds

Structural Performance of Reinforced Concrete Beams Exposed to Freeze-Thawing Environment After Strengthening in Shear with Carbon Fiber-Reinforced Polymer(CFRP) (탄소섬유 폴리머로 전단보강 후 동결융해 환경에 노출된 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.115-125
    • /
    • 2009
  • In these days, carbon fiber-reinforced polymers (CFRP) have been widely used for retrofitting and/or strengthening structural elements. However, there are not enough test data to predict the long-term performance of the retrofitted structures exposed to freeze-thawing cycles. This paper presents the results of experimental program undertaken to investigate the effects of freeze-thawing cycling (from-18 to $4^{\circ}C) on the behavior and failure characteristics of reinforced concrete (RC) beams strengthened in shear with CFRP sheet and plate using acoustic emission (AE) technique.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

Electrical and Resistance Heating Properties of Carbon Fiber Heating Element for Car Seat (자동차 시트용 탄소섬유 발열체의 전기적 및 저항 발열 특성)

  • Choi, Kyeong-Eun;Park, Chan-Hee;Seo, Min-Kang
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.210-216
    • /
    • 2016
  • In this paper, the electrical and resistance heating properties of carbon fiber heating elements with different electroless Ni-P plating times for car seat were studied. The specific resistance and specific heat of the carbon fibers were determined using 4-point probe method and differential scanning calorimetry (DSC), respectively. The surface morphology and temperature of carbon fibers were measured by scanning electron microscope (SEM) and thermo-graphic camera, respectively. From experimental results, the nickel layer thickness and surface temperature of carbon fibers increased with increasing the plating time. However, the specific heat and specific resistance decreased with respect to the increased plating time. In conclusion, the electroless Ni-P plating could improve the resistance heating and electrical properties of carbon fiber heating elements for car seat.

Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements (저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성)

  • Yang, Jae-Yeon;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.412-420
    • /
    • 2018
  • In this work, phenolic resins containing conductive carbon fillers, such as, petroleum coke, carbon black, and graphite, were used to improve the surface heating elements by impregnating a pitch-based carbon paper. The influence of conductive carbon fillers on physicochemical properties of the carbon paper was investigated through electrical resistance measurement and thermal analysis. As a result, the surface resistance and interfacial contact resistivity of the carbon paper were decreased linearly by impregnating the carbon fillers with phenol resins. The increase of carbon filler contents led to the improvement of electrical and thermal conductivity of the carbon paper. Also, the heating characteristics of the surface heating element were examined through the applied voltage of 1~5 V. With the applied voltage, it was confirmed that the surface heating element exhibited a maximum heating characteristic of about $125.01^{\circ}C$(5 V). These results were attributed to the formation of electrical networks by filled micropore between the carbon fibers, which led to the improvement of electrical and thermal properties of the carbon paper.

Structure of Opposite Wood in Angionsperms(I) - Structure of Opposite Woods in the Inclined Stem of Mature Woods - (활엽수(闊葉樹) Opposite재(材)의 구조(構造)(I) - 경사(傾斜) 생장(生長)한 성숙재(成熟材) 수간(樹幹)의 Opposite재(材) 구조(構造) -)

  • Park, Sang-Jin;Park, Byung-Soo;Soh, Won-Taek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.1-12
    • /
    • 1989
  • To study the structure of opposite wood in the angiosperms. samples were cut from stems and branchs of 10 spcies growing in Korea. The opposite side was defined as being along a line passing from the most wide annual ring of the tension wood on the upper side to the pith and extrapolated through the opposite side. lateral sides being on the right and left of this line. The stem woods growing almost horizontally were surveyed the structural features of the well-developed opposite wood for the tension wood. In the annual-ring of the well-developed opposite woods. an investigation was made on how the dimension of elements, microfibril angles. and cell wall layers change from tension side to opposite side. The structural characteristics of opposite wood in hardwoods realized in this study are as follows: 1. The vessel diameters increased continuously to ward the opposite side in which the values were maximum. The vessel length also increased toward opposite side. but the rates of increase were smaller than those in the vessel diameters. 2. The wood fiber length were decreased from tension toward opposite side. but the rates of decrement were f1actuated within the sampled species. 3. The microfibril angles had the minimum values on the tension side. then increased steeply toward the opposite side in which the values maximum. 4. In the percentage of elements the vessel elements increased continously at a relative rate from the tension to opposite side, whereas the values of the wood fibers were lower in the opposite than the tension side, but the' variation patterns of rays were not seem distinctly. 5. The component layers of the wood fiber in the opposite woods were very similar to the lateral woods.

  • PDF

Flexural Analysis of Laminated Composite T-Beams (적층복합 T형 보의 휨 해석)

  • Back, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.397-405
    • /
    • 2014
  • A shear-flexible beam element is presented for the flexural analysis of laminated composite T-beams with arbitrary lay-ups. Based on the first-order shear deformable beam theory, the derived element takes into account warping shear deformation and all coupling coming from material anisotropy. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements with seven degree-of-freedom per node are developed to solve governing equations. To demonstrate the versatility and accuracy of the beam element formulated, numerical results are performed for symmetric and anti-symmetric angle-ply composite T-beams under the uniformly distributed and concentrated load. The effects of fiber angle and shear deformation are investigated for different laminated stacking sequence. The quadratic and cubic elements are shown to be applicable to the flexural analysis of composite T-beams.

Anatomical Characteristics of Major Korean Ash Species (한국산 물푸레나무속(屬) 주요 수종의 해부학적 특성)

  • Hwang, Won-Joong;Kwon, Goo-Joong;Park, Wan-Geun;Bae, Young-Soo;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • Anatomical characteristics of Mulpurenamu (Korean ash, Praxmus rhynchopbylla), Deulmaenamu (Manshurican ash, Fraxinus mandsburica) and Sheamulpure (Sieboldiana ash, Fraxinus sieboldiana) grown in Korea were examined by an optical microscopy and an image analysis. Some characteristics such as boundary of annual rings, shape and size of vessel elements, arrangement of axial parenchyma cells in cross section, and cell volumetric composition showed significant differences between the sample species. In radial variation of elements, fiber length and vessel size increased from the pith for about 10 to 15 years and then reached a more or less constant. The results of this study can be used for identification of wood and indices of wood quality in Fraxinus spp.

Behavior of RC columns strengthened with NSM and hybrid FRP under pure bending: Experimental and analytical study

  • Mohsen A. Shayanfar;Mohammad Ghanooni-Bagha;Solmaz Afzali
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.393-408
    • /
    • 2024
  • In recent decades the strengthening of reinforced concrete (RC) structural elements using Fiber-reinforced polymer (FRP) has received much attention. The behavior of RC elements can vary from axial compression to pure bending, depending on their loading. When the compressive behavior is dominant, the FRP jacket application is common, but when the flexural behavior is prevalent, the codes consider the FRP jacket ineffective. Codes suggest applying FRP bars or strips as Near-surface Mounted (NSM) or Externally Bonded (EB) in the tensile face to strengthen the beams under flexure. To strengthen the columns in tension-control mode, some researchers have suggested NSM FRP bars in both tension and compression faces alone or with the FRP jacket (hybrid). However, the number of tests that evaluate the pure bending of the strengthened columns as one of the pivotal points of the axial force-moment interaction curve is limited. In this paper, 11 RC elements strengthened using the NSM (in both tension and compression faces) or hybrid method were subjected to bending to assess the effect of the amount and material type of the FRP bar and jacket and the dimensions of the groove. The test results revealed that the NSM method increased the flexural capacity of the members between 10% to 50%. Furthermore, using the hybrid method increased the capacity between 51% to 91%. Finally, an analytical model was presented considering the effect of the NSM FRP bond in different circumstances, and its results were in good agreement with the experimental results.

Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS (INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF

A force-based element for direct analysis using stress-resultant plasticity model

  • Du, Zuo-Lei;Liu, Yao-Peng;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.175-186
    • /
    • 2018
  • The plastic hinge method and the plastic zone method are extensively adopted in displacement-based elements and force-based elements respectively for second-order inelastic analysis. The former enhances the computational efficiency with relatively less accurate results while the latter precisely predicts the structural behavior but generally requires more computer time. The displacement-based elements receive criticism mainly on plasticity dominated problems not only in accuracy but also in longer computer time to redistribute the forces due to formation of plastic hinges. The multi-element-per-member model relieves this problem to some extent but will induce a new problem in modeling of member initial imperfections required in design codes for direct analysis. On the contrary, a force-based element with several integration points is sufficient for material yielding. However, use of more integration points or elements associated with fiber section reduces computational efficiency. In this paper, a new force-based element equipped with stress-resultant plasticity model with minimal computational cost is proposed for second-order inelastic analysis. This element is able to take the member initial bowing into account such that one-element-per-member model is adequate and complied with the codified requirements of direct analysis. This innovative solution is new and practical for routine design. Finally, several examples demonstrate the validity and accuracy of the proposed method.