• Title/Summary/Keyword: fiber coupling

Search Result 331, Processing Time 0.024 seconds

Investigation of the Polarization Cross-Coupling in Fiber Coils Using White Light Michelson Interferometer (백색광 마이켈슨 간섭계를 이용한 광섬유 고리의 편광 교차결합 측정)

  • Jo, Min-Sik;Do, Jae-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.109-115
    • /
    • 2006
  • The investigation of the polarization cross-coupling in fiber coils was made using white light Michelson interferometer. The white light interferometer has a light source of about 13nm spectral bandwidth and measurement resolution of less than -80dB. The measurement found that the 200m fiber coil has a polarization cross-coupling of about -64dB in average and -46dB in maximum.

Comparison of Electrodeposited Carbon Fibers Reinforce Epoxy Composites Using Monomeric and Polymeric Coupling Agents

  • Park, Joung-Man;Kim, Yeong-Min
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.153-164
    • /
    • 2000
  • By electrodeposition (ED) using a monomeric- and two polymeric coupling agents, the interfacial shear strength (IFSS) of carbon fiber/epoxy composites was investigated by fragmentation test. ED results were compared with the dipping and the untreated cases under dry and wet conditions. Multi-fiber composites (MFC) were used for the direct comparison for the untreated and the treated cases. Various treating conditions including time, concentration and temperature were evaluated, respectively. Under dry and wet conditions ED treatment exhibited much higher IFSS improvement compared to the dipping and the untreated cases. Monomeric- and polymeric coupling agents exhibited the comparative IFSS improvement. Adsorption mechanism between coupling agents and carbon fiber was analyzed in terms of the electrolyte molecular interactions during ED process based on to the chain mobility. The microfailure modes occurring from the fiber break, matrix and interlayer cracks were correlated to IFSS.

  • PDF

Effect of a Conductor Cladding on a Dielectric Slab for Coupling with a Side-polished Fiber

  • Kwon, Kwang-Hee;Song, Jae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2003
  • A theoretical presentation by using a three-dimensional finite difference beam propagating method (3-D FD-BPM) for the evanescent coupling is offered with respect to the refractive indexes between a side-polished optical fiber and an infinitely planar waveguide with a conductor cladding (PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with a perfect conductor (PEC) on one side. The coupling and propagation of light are found to depend on both the relationship between the refractive index values of two structures and the configuration of the side-polished fiber used in the PWGCC. The spreading of light in the unconfined direction of a PWGCC is presented with the distribution of electric fields in xy - plane and the absolute amplitude of electric fields along the x and y axis. The power of the light propagation in a fiber decreases exponentially along the fiber axis as it is transferred to the PWGCC, where it is carried away.

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix

  • Carrillo-Escalante, H.J.;Alvarez-Castillo, A.;Valadez-Gonzalez, A.;Herrera-Franco, P. J.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.47-56
    • /
    • 2016
  • In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.

Analysis of Deadzone Error by Electrical Cross-coupling on a Closed-loop Fiber Optic Gyroscope (폐루프 광섬유자이로스코프의 전기적 교차결합에 의한 불감응 영역 오차 분석)

  • Chong, Kyoung Ho;Chong, Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.437-442
    • /
    • 2014
  • Due to electrical cross-coupling between modulation voltage and photodetector output in a closed-loop fiber optic gyro, deadzone inevitably occurs. In this paper, deadzone error by cross-coupling effect was analyzed and the overcoming method was suggested. Simulation and measurement results show the main reason for deadzone is mainly related to electrical cross-coupling, and it can be effectively reduced by square-wave dithering method.

Effect of Silane Coupling Agent on the Interfacial Adhesion and Mechanical Properties of Polyketone Fiber Reinforced Epoxy Composites (실란커플링제 처리가 폴리케톤섬유/에폭시 복합재료의 계면접착성 및 물성에 미치는 영향)

  • Jo, Hani;Yang, Jee-Woo;Lim, Hyeon Soo;Oh, Woo Jin;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.29 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • The interfacial adhesion between fiber and matrix affects the physical properties of fiber reinforced composites. In this study, 3-(Methacryloyloxy)propyltrimethoxy silane(MPS) coupling agent was used to increase the interfacial adhesion between polyketone fiber and epoxy resin. The change of surface chemical composition of polyketone fiber treated with MPS was analyzed using a FTIR-ATR. The interfacial bonding between fiber and resin increased with silane coupling agent largely. Consequently, interfacial shear strength(IFSS) was enhanced with increasing concentration of MPS coupling agent and thus, the physical properties of the composites such as flexural properties and dynamic mechanical properties were changed. Flexural strength and modulus increased when the MPS concentration was higher than 0.5wt%. The dynamic storage modulus of Polyketone/Epoxy composites treated with MPS was higher than that of the untreated one. When the MPS concentration of 3wt%, the highest storage modulus was obtained.

Wavelength-division multiplexing channel isolation filter using a side-polished fiber coupler (측면 연마 광섬유 결합기를 이용한 파장분할 다중화 채널분리 필터)

  • 손경락;김광택;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.461-466
    • /
    • 2002
  • Fiber-optic comb filters using a side-polished fiber coupler are proposed as multi-channel isolation filters on wavelength division multiplexing systems. We have demonstrated that the coupling efficiency between two waveguides is improved by the intermediate coupling layer in spite of the decrease of the optical power transfer between two waveguides due to the high-order modes of the overlay waveguide coupled with the side-polished single-mode fiber. When LiNbO$_3$with a 200-${\mu}{\textrm}{m}$-thickness was applied as a planar-overlay-waveguide, the comb filtering characteristics with a 4 nm-channel-spacing were achieved and the maximum power coupling occurred at the 1-${\mu}{\textrm}{m}$-thickness and the refractive index in range 1.52 to 1.53 of an intermediate coupling layer. If the intermediate coupling layer is optimized, an extinction ratio with more than 20 dB can be obtained. These experimental results are in good agreement with the BPM simulation.

Mechanical Properties of Carbon Fiber/Nylon 6 Composite Introducing Coupling Agent (II) -Increasing Interfacial Strength of Composite- (카플링제를 도입한 탄소섬유/나일론 6 복합재료의 기계적 성질(II) -복합재료의 계면강도 증가-)

  • Park, Chan Hun;Lee, Yang Hun;Shin, Eun Joo
    • Textile Coloration and Finishing
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 1997
  • To improve the interfacial bonding of carbon fiber-nylon 6 composite, carbon fiber(CF) were oxidized by nitric acid treatment, and two types of graft polymer(GP) of nylon 6-g-polyacrylamide (PAAm) -water dispersable GP(WDGP) and m-cresol solu ble GP(CSGP) were treated as coupling agents. Introduction of polar groups such as -COOH, -OH, etc, on the surface of the oxidized CF was confirmed by IR spectra. The stem polymer of nylon 6 in the coupling agent (GP) could be compatible with'matrix nylon 5, and the grafted branch of PAAm on GP could react to the polar groups on the oxidized CF in composite. The interfacial strength was measured by the transverse tensile test to the fiber direction for single CF embedded nylon 6 film especially prepared and by the pull-out test method. The interfacial strength of the composite reinforced with oxidized CF is greater than that reinforced with unoxidized CF. The interfacial strength of the composite was increased by treatment of coupling agents(GPs) considerably, and the increasing tendency by the WDGP is greater than that by the CSGP. The optimum conditions of coupling agent treatment are as follows: the concentration, adsorption tlme of GP, and curing temperature are 2%, 20 minutes, and $170^{\circ}$, respectively.

  • PDF

A Study on Microfailure Mechanism of Single-Fiber Composites using Tensile/Compressive Broutman Fragmentation Techniques and Acoustic Emission (인장/압축 Broutman Fragmentation시험법과 음향방출을 이용한 단섬유 복합재료의 미세파괴 메커니즘의 연구)

  • Park, Joung-Man;Kim, Jin-Won;Yoon, Dong-Jin
    • Composites Research
    • /
    • v.13 no.4
    • /
    • pp.54-66
    • /
    • 2000
  • Interfacial and microfailure properties of carbon fiber/epoxy matrix composites were evaluated using both tensile fragmentation and compressive Broutman tests with an aid of acoustic emission (AE) monitoring. A polymeric maleic anhydride coupling agent and a monomeric amino-silane coupling agent were used via the electrodeposition (ED) and the dipping applications, respectively. Both coupling agents exhibited significant improvements in interfacial shear strength (IFSS) compared to the untreated case under tensile and compressive tests. The typical microfailure modes including fiber break of cone-shape, matrix cracking, and partial interlayer failure were observed during tensile test, whereas the diagonal slippage in fiber ends was observed under compressive test. For both loading types, fiber breaks occurred around just before and after yielding point. In both the untreated and treated cases AE amplitudes were separately distributed for the tensile testing, whereas they were closely distributed for the compressive tests. It is because of the difference in failure energies of carbon fiber between tensile and compressive loading. The maximum AE voltage for the waveform of carbon or basalt fiber breakages under tensile tests exhibited much larger than those under compressive tests, which can provide the difference in the failure energy of the individual failure processes.

  • PDF

Novel Criterions to determine Optimized Power coupling in Grating-Assisted Fiber Couplers (GAFCs) (격자구조형 광섬유 결합기에서 최적 전력결합을 결정하기 위한 새로운 조건)

  • Ho, Kwang-Chun;Ho, Kwang-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.2
    • /
    • pp.120-126
    • /
    • 2006
  • A grating-assisted fiber coupler(GAFC), which consists of a thin-film waveguide with grating and circular optical fiber, is proposed and the optimized power coupling is evaluated by using a technique amenable to rigorous longitudinal modal transmission-line theory(L-MTLT). In addition, novel criteria to couple an optical signal incident through the grating waveguide to a single-mode optical fiber are proposed. The numerical result reveals that the optimized power coupling occurs at minimum-gap condition between rigorous modes rather than for the conventional phase-matching condition.