• Title/Summary/Keyword: fiber beam

Search Result 1,187, Processing Time 0.023 seconds

Multi-kilowatt Single-mode Ytterbium-doped Large-core Fiber Laser

  • Jeong, Yoon-Chan;Boyland, Alexander J.;Sahu, Jayanta K.;Chung, Seung-Hwan;Nilsson, Johan;Payne, David N.
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.416-422
    • /
    • 2009
  • We have demonstrated a highly efficient cladding-pumped ytterbium-doped fiber laser, generating $>$2.1 kW of continuous-wave output power at 1.1 μm with 74% slope efficiency with respect to launched pump power. The beam quality factor ($M^2$) was better than 1.2. The maximum output power was only limited by available pump power, showing no evidence of roll-over even at the highest output power. We present data on how the beam quality depends on the fiber parameter, based on our current and past fiber laser developments. We also discuss the ultimate power-capability of our fiber in terms of thermal management, Raman nonlinear scattering, and material damage, and estimate it to 10 kW.

Theoretical Study of the Beam Profile and Coupling Efficiency for Fiber-Photodiode Coupling using Si V-grooves (Si V-groove를 이용한 광섬유와 Photodiode결합에서의 Beam Profile과 결합효율에 대한 이론적 연구)

  • Keum, Dong-In;Min, Sung-Wook;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1265-1267
    • /
    • 1995
  • In the fiber-photodiode(PD) coupling module using v-groove, the paraxial approximation is no longer valid because the beam enters obliquely the PD substrate with the angle of $20^{\circ}$ after being reflected from the $55^{\circ}$ mirror formed by anisotropically etching of the (100) silicon wafer. In this paper, we study the beam profile incident on the PD active area and fiber-PD coupling efficiency for this case.

  • PDF

The Study on Flexural Behavior of Reinforced Concrete Beams Strengthened with the Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 R/C보의 휨 거동 연구)

  • 심종성;문도영;김영호;김동희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.611-616
    • /
    • 2002
  • The concrete beam is quickly required to be replaced or strengthened due to decreasing load carrying capacity. Flexural tests on 3.1m long reinforced concrete beams with carbon-fiber rod are reported. The selected experimental variable is the method of the anchoring beam. The effects of this variable in overall behavior are discussed. This paper considered relation of load-displacement and load-strain. The maximum load was increased to the static behavior of the R/C beam strengthened with CFR rod. The results indicated generally that the flexural strength of strengthening beam was increased. It was required a proper anchorage system and can be led the ductility of beams of a carbon-fiber rod.

  • PDF

Mode Sensing of a Composite Beam Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 구조물의 모드 형상 측정)

  • 구본용;류치영;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.163-166
    • /
    • 2000
  • Fiber Bra99 grating (FBG) sensor, one of the fiber optic sensor (FOS) offers lots of advantages for structural health monitoring due to its multiplexing capability. Also, it is proper to measure the structural vibration with no mass concentration effect. In this paper, we constructed two sensor arrays composed of 9 FBG sensors for the vibration and mode sensing of a composites beam. For an accurate measurement of wavelength shift, a signal processing board with an electric circuit based on time-interval counting was developed. This sensor system showed a good resolution of dynamic strain (<10${\mu}{\varepsilon}$). Using this sensor system, dynamic strains at 9 points of composite beam was measured and strain measured mode shape of the beam was calculated from the acquired strains and compared with numerical results by ABAQUS.

  • PDF

An experimental study on estimating deflection of RC beam using resistive strain gauge and fiber optic sensor (센서유형별 측정 변형률을 이용한 철근콘크리트 보의 처짐추정에 관한 실험적 연구)

  • 이규완;박기태;박흥석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.517-522
    • /
    • 2000
  • In the past few years, the nondestructive inspection technology has greatly developed due to the increased necessity to gain a complete understanding of the bridge behavior. Especially, the deformations of bridges contain a lot of informations about its health state. By measuring these deformations it is possible to analyze the loading and aging behavior of the structure. However, the current methods (such as LVDT, dial gage, optical displacement tranceducer, etc) are often of changeable application on site and have the limitations of installation. In this paper, the classical beam theory was reviewed and the deflections of structure are estimated using measured strain which is easy to acquire. The applicability of this algorithm is verified by a preliminary steel beam test and two types of concrete beam tests. Also fiber optic sensors as well as resistive strain gages were installed in the concrete beams to establish the applicability of fiber optic sensors in the field of civil engineering.

  • PDF

Flexural Capacity of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨성능)

  • Park, Hyun-Jung;Cho, Baik-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.177-187
    • /
    • 2004
  • This investigation attempts to analyze the flexural behavior of a strengthened beam with carbon fiber sheets in three stages according to the conditions of the constituents : elastic stage, pre-yielding stage, and post-yielding stage. The proposed analytical method for strengthened beams is compared with the experimental results such as yield load, ultimate load, and flexural rigidities. The contributions of the constituents to the strengthened beam capacity are examined from the flexural analysis. The validity of using KCI strength method to estimate ultimate moment of a strengthened beam is also investigated.

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (IV) - Correlation of Keyhole's Periodic Motion and FFT Analysis Results - (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (IV) - 키홀의 주기운동과 FFT분석의 상관성 -)

  • Kim, Jong-Do;Lee, Chang-Je;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.28-33
    • /
    • 2013
  • The effects of laser welding beam quality is very large. However, not an analysing case was found for the difference on the plasma emission signal during laser welding according to the beam quality. Therefore, in this study, we compared and evaluated penetration and signal change according to the beam quality at the a similar wavelength band by using a fiber laser and Nd:YAG laser. In addition, we took high speed videography in order to make sure that FFT analysis reflects the actual motion period of keyhole and found the period of video analysis and FFT mostly matched. As a result, it is expected to secure higher reliability than evaluating signal intensity when appling FFT to monitoring.

Weight minimum design of concrete beam strengthened with glass fiber reinforced polymer bar using genetic algorithm

  • Rahman, Md. Moshiur;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.127-131
    • /
    • 2017
  • This paper presents a generalized formulation for optimizing the design of concrete beam reinforced with glass fiber reinforced polymer bar. The optimization method is formulated to find the design variables leading to the minimum weight of concrete beam with constraints imposed based on ACI code provisions. A simple genetic algorithm is utilized to solve the optimization task. The weights of concrete and glass fiber reinforced polymer bar are included in the formulation of the objective function. The ultimate limit states and the serviceability limit states are included in formulation of constraints. The results of illustrated example demonstrate the efficiency of the proposed method to reduce the weight of beam as well as to satisfy the above requirement. The application of the optimization based on the most economical design concept have led to significant savings in the amount of the component materials to be used in comparison to classical design solutions.

Measurement of Spatial Coherence Function of multy-mode beam by using a Sagnac Interferometer

  • Lee, Chang-Hyeok;Gang, Yun-Sik;No, Jae-U
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.187-189
    • /
    • 2008
  • The spatial coherence function of multy-mode beam was measured by using a Sagnac interferometer and self referencing technique. For leaner polarization laser beam passing through a multy-mode fiber, its change value of spatial mode and polarization from stress of faber and input coupling angle. And each spatial mode have each polarizations, when we simulation Wigner distribution function and Spatial Correlation function of spatial multi-mode beam by using Hermit Gaussian modes leaner sum. We measured spatial coherence function of using by multy-mode fiber. One can use this measurement method to study and characterize the property of multy-mode light field coming out of GRIN multy-mode fiber.

  • PDF

Micro lens system design for the optical fiber communication (광통신 변조기용 미세광학소자의 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.217-221
    • /
    • 1992
  • A micro lens system was designed for the modulator in optical fiber communication. One was the collimating lens which transferred the diffracted beam from optical fiber to the modulator. The other was the coupling lens which connected the modulated collimating beam to the optical fiber. The light source was He-Ne laser beam. The lens would be made of optical glass BK-7. We determined the tolerance of curvature radius, thickness and conic constant.

  • PDF