• Title/Summary/Keyword: fiber beam

Search Result 1,187, Processing Time 0.028 seconds

Effect of Electron Beam Irradiation on the Interfacial and Thermal Properties of Henequen/Phenolic Biocomposites

  • Pang, Yansong;Yoon, Sung Bong;Seo, Jeong Min;Han, Seong Ok;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.6 no.4
    • /
    • pp.12-17
    • /
    • 2005
  • Natural fiber/phenolic biocomposites with chopped henequen fibers treated at various levels of electron beam irradiation (EBI) were made by means of a matched-die compression molding method. The interfacial property was explored in terms of interfacial shear strength measured by a single fiber microbonding test. The thermal properties were studied in terms of storage modulus, tan ${\delta}$, thermal expansion and thermal stability measured by dynamic mechanical analysis, thermomechanical analysis and thermogravimetric analysis, respectively. The result showed that the interfacial and thermal properties depend on the treatment level of EBI done to the henequen fiber surfaces. The present result also demonstrates that 10 kGy EBI is most preferable to physically modify the henequen fiber surfaces and then to improve the interfacial property of the biocomposite, supporting earlier results studied with henequen/poly (butylene succinate) and henequen/unsaturated polyester biocomposites.

  • PDF

Development of Multi-channel Fiber Laser and Beam Alignment Method (다채널 광섬유 레이저 및 다중 빔 정렬 기술 개발)

  • Kim, Youngchan;Ryu, Daegeon;Noh, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.245-251
    • /
    • 2022
  • We have developed a multi-channel fiber laser for tiled laser beam combining and a laser output array system for multi-beam alignment. The fiber laser is a master oscillator power amplifier configuration that has a common seed, a preamplifier, and a 7-channel amplifier. The output power of each channel is more than 10 W. The laser output array system is a packed cylindrical configuration for a high fill-factor, and it has capabilities for collimation and tilt control with built-in PZT. Multi-beam alignment to a target is successfully implemented using PZT controlled with a stochastic parallel gradient descent (SPGD) algorithm.

Strain Sensitivity of Fiber Optic Bragg Grating Sensor (광섬유 브래그 격자 센서의 변형률 감지도)

  • Kwon, Il-Bum;Choi, Man-Yong;Kim, Min-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • Recently, there has been considerable interest in the development of fiber-optic sensors based on fiber Bragg gratings (FBGs), which can be made into Ge-doped fiber's core by UV phase mask or holographic methods. A good sensitivity and small size of this sensor make it an ideal candidate for distributed sensing in smart structures or other structural monitoring applications. In this study, fiber optic Bragg grating sensor, which could be applied to measure the absolute strains, was constructed and the strain sensitivity of this sensor was investigated in order to apply to the structural health monitoring. Fiber Fabry-Perot (FFP) filter has been used to detect the optical signals instead of optical spectrum analyzer. It has been convenient to determine the structural strains from the output signal of FBGs. The fiber optic Bragg grating sensor was attached on the aluminum beam near the electrical strain gage to measure the same strain. The relationship between strain and fiber signal was linearly fitted. The strain sensitivity of the fiber optic Bragg grating sensor was determined as $l.57{\mu}{\varepsilon}/{\mu}sec$ from the aluminum beam test.

  • PDF

Improvement and Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams Using Early Age Concrete (초기재령 강섬유보강 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kwak, Yoon-Keun;Kwon, Chil-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.129-137
    • /
    • 1999
  • Reinforced concrete structures using early age concrete were result in the degradation of structural performance due to crack, overload, unexpected vibration and impact load. It demands urgently that reinforced concrete structure using early age concrete should be improved the serviceability and structural performance with the application of new fiber materials. Therefore specimens, designed by the test varibles, such as with or without stirrup and percent of steel fiber incorporated, were constructed and tested to evaluate and develop the structural performance of reinforced steel fiber concrete beam. Based on the test results reported in this study, the following conclusions are made. Specimens, designed by the over 0.75% of steel fiber incorporated, were showed the ductile behavior and failed slowly with flexure and flexure-shear. Comparing with the load-displacement relationship of specimen BSS, designed by the recommendations of the Ministry of Construction and Transportation, reinforced steel fiber concrete beam using early age concrete, over 0.75% of steel fiber incorporated, gets enough load carrying capacity and ductility. Increasing the percent of steel fiber incorporated(0.25~2.0%), the ultimate shear stress of each specimen were increased 12~40% than that of control specimen SSS.

  • PDF

A Study on Fire Resistance and Spalling of HPC Beam with Fiber-Cocktail in ISO Fire under Loading Condition (표준화재 재하조건하에서 Fiber Cocktail을 혼입한 고강도 콘크리트 보의 폭렬특성 및 내화성능에 관한 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.126-134
    • /
    • 2009
  • In an attempt to control the spalling in high strength concrete, spalling reducer was mixed to identify the effect and thermal characteristics of concrete beam member at high temperature. The member was manufactured in such as way of adding 40~60MPa of high strength concrete into spalling reducer, and then fire resistance performance were monitored under the ISO standard fire load condition in accordance with KS F 2257. As a result of test, fore rate performance of 40MPa beam without spalling reducer was 180minutes, 50MPa was 174minutes and 60MPa was 152minutes, indicating that 50MPa and 60MPa beam appeared 6~28minutes short to become a 3-hour rate. However, 50 and 60MPa beam mixed with spalling reducer appeared to have satisfied the requirements for 180minutes. A spalling was occurred in surface of 50 and 60MPa beam mixed without spalling reducer, while no spalling or surface failure was occurred with 50 and 60MPa beam mixed with spalling reducer. Thus polypropylene fiber mixed with the concrete proved to be effective, but viewing that the surface of 60MPa was peeled off partially, the steel fiber mixed appeared not to be effective for the beam more than 60MPa.

CO2 Laser Assisted Fabrication of Micro-lensed Single-mode Optical Fiber

  • Choi, Hun-Kook;Yoo, Dongyoon;Sohn, Ik-Bu;Noh, Young-Chul;Sung, Jae-Hee;Lee, Seong-Ku;Jeong, Tae-Moon;Ahsan, Md. Shamim;Kim, Jin-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.327-333
    • /
    • 2015
  • This paper reports the fabrication of various micro-lensed single-mode optical fibers through the use of an enhanced peak power $CO_2$ laser beam. The end faces of the optical fibers are exposed to the $CO_2$ laser beam to form convex, concave, and conical shape optical fiber tips. Peak power of the $CO_2$ laser beam was varied from 0.8 W to 1.5 W depending on the shape of the optical fiber tip. We also discover the dependence of the angle of the optical fiber tip on the rotation angle and the number of $CO_2$ laser irradiations. The angle shows an increasing trend with both these parameters. We achieve a wide range of lenticular fibers with end face angle varying from $4.47^{\circ}$ to $8.13^{\circ}$. Furthermore, we investigate the emission pattern of light from the developed micro-lensed fibers. The proposed $CO_2$ laser based optical fiber reshaping technique shows great consistency, and thus is suitable for commercial applications.

$LP_{11}$ Mode Fiber Optic Resonant Ring Interferometer with a $LP_{11}$ Modal Filter ($LP_{11}$ 결모양 빛살거르게를 사용한 $LP_{11}$ 결모양 빛살 광섬유 공진고리 간섭계)

  • 이현재;이두희;서상준;양진성
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 1991
  • Using evanescent field coupling between single ($LP_{01}$) and double ($LP_{01}, LP_{11}$) mode optical fiber, we selected LPII mode beam. With a $LP_{11}$ mode beam from a double mode fiber. we fabricated $LP_{11}$ mode fiber optic resonant ring interferometer, and assured that the guided mode is $LP_{11}$ mode from a radiation beam coming through the prism output coupler. When an external perturbation applied to the signal arm of the $LP_{11}$ fiber optic resonant ring interferometer, we examined the change of radiation mode coming from a prism output coupler and an end of optical fiber. Using two photodiode, LPn mode beam converted to voltage. This two output voltages is applied to X and Y terminal of oscilloscope to display circular motion on oscilloscope.

  • PDF

Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites (노치 유무와 섬유혼입률에 따른 UHPCC의 휨인장강도 비교)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.525-533
    • /
    • 2012
  • In this study, bending tests were performed on beam specimens made of UHPCC with the fiber content range of 0~5 vol% to investigate the contribution of fiber content to first cracking strength and flexural tensile strength. Also, four-point bending tests for unnotched beam as well as three-point bending test for notched beam were performed to estimate the effect of the presence of notch on the strengths. The experiment result showed that the increase in fiber content made linear improvement in the flexural tensile strength; whereas first cracking strength was enhanced only when at least 1 vol% of fibers was incorporated. Comparison of the bending test results with and without notch showed that the notch effect varied with the fiber content. The increase in fiber content diminished the effect of stress concentration on the notch tip, reducing the difference in the strengths. With much higher fiber content, the effect of stress concentration almost disappeared and the defection on cracking plane or the size effect dominated the strengths, consequently resulting in higher strengths in the notched beams than the unnotched ones.

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF

Improvement and Seismic Performance Evaluation of RC Exterior Beam-Column Joints Using Recycled Coarse Aggregate with Hybrid Fiber (순환굵은골재 치환과 하이브리드섬유 혼입에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Jae-Hoon;Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.160-169
    • /
    • 2015
  • In this study, experimental research was carried out to improve the seismic performance of reinforced concrete exterior beam-column joint regions using replacing recycled coarse aggregate with hybrid fiber (steel fiber+PVA fiber) in existing reinforced concrete building. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and bridge of retrofitting hybrid fiber during testing. Specimens BCJGPSR series, designed by the retrofitting of replacing recycled coarse aggregate with hybrid fiber in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.01~1.04 times and its energy dissipation capacity by 1.06~1.29 times in comparison with standard specimen BCJS. Also, specimen $BCJGPSR_1$ were increased its energy dissipation capacity by 1.33~1.65 times in comparison with specimens BCJS, BCJP and BCJGPR series for a displacement ductility of 9.