• 제목/요약/키워드: fiber aspect ratio and volume fraction

검색결과 50건 처리시간 0.025초

강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발 (Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber)

  • 곽계환;황해성;성배경;장화섭
    • 한국농공학회논문집
    • /
    • 제48권3호
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

단섬유강화 복합재료에서 사출측/금형측 노즐 크기 변화에 따른 섬유손상 및 기계적 성질 (The Fiber Damage and Mechanical Properties of Short-fiber Reinforced Composite Depending on Nozzle Size Variations in Injection/Mold Sides)

  • 이인섭;이동주
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.564-573
    • /
    • 2001
  • The mechanical properties of short carbon/glass fiber reinforced polypropylene are experimentally measured as functions of fiber content and nozzle diameter. Also, these properties are compared with the survival rate of reinforced fibers and fiber volume fraction using image analysis after pyrolytic decomposition. The survival rate of fiber aspect ratio as well as fiber volume fraction is influenced by injection processing condition, the used materials and mold conditions such as diameter of nozzle, etc. In this study, the survival rate of fiber aspect ratio is investigated by nozzle size variations in injection/mold sides. It is found that the survival rate of glass fiber is higher that the survival rate of glass fiber is higher than that of carbon fiber. Both tensile modulus and strength of short-fiber reinforced polypropylene are improved s the fiber volume fraction and nozzle diameter are increased.

단섬유 복합재료의 탄성계수 예측에 관한 연구 (A Study on the Prediction of Elastic Modulus in Short Fiber Composite Materials)

  • 김홍건
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.318-324
    • /
    • 2005
  • Theoretical efforts are performed to extend the formulation of NSLT(New Shear Lag Theory) for the prediction of the elastic modulus in short fiber composite. The formulation is based on the elastic stress transfer considering the stress concentration effects influenced by elastic modulus ratio between fiber and matrix. The composite modulus, thus far, is calculated by changing the fiber aspect ratio and volume fraction. It is found that the comparison with FEA(Finite Element Analysis) results gives a good agreement with the present theory (NSLT). It is also found that the NSLT is more accurate than the SLT(Shear Lag Theory) in short fiber regime when compared by FEA results. However, The modulus predicted by NSLT becomes similar values that of SLT when the fiber aspect ratio increases. Finally, It is shown that the present model has the capability to predict the composite modulus correctly in elastic regime.

강섬유 혼입율 및 형상비가 초고강도 콘크리트의 역학적 성질에 미치는 영향 (The Effects of Mixture Rate and Aspect Ratio of Steel Fiber on Mechanical Properties of Ultra High Performance Concrete)

  • 최중구;이건철;고경택
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.14-20
    • /
    • 2017
  • UHPC는 초고층 건물 및 초장대교의 경우 필연적으로 사용되어진다. 일반적으로 콘크리트는 압축강도보다 낮은 휨강도 및 인장강도를 가지므로 취성균열이 발생하여 에너지 흡수능력이 저하된다. 이러한 문제를 해결하기 위해 본 연구에서는 강섬유의 혼입율과 형상비가 UHPC의 기계적 물성에 미치는 영향을 조사하고자한다. 시리즈 I에서, 20mm 직선형 강섬유가 0, 1.0, 1.3, 1.5 및 2.0%의 혼입율로 첨가되었다. 시리즈 II에서는 16mm 강섬유를 0, 1, 1.5%로 혼입한 후 형상비에 따라 역학적 성질을 조사하였다. 실험결과, 압축강도의 차이는 미비했다. 하지만 휨강도 및 인장강도와 관련하여 혼입율 및 형상비가 증가함에 따라 휨성능 및 인장성능이 개선되었다.

후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성 (Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete)

  • 김동휘;장석준;김선우;박완신;윤현도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권3호
    • /
    • pp.40-47
    • /
    • 2021
  • 이 연구는 후크형 강섬유의 체적비 및 형상비에 따른 콘크리트 설계기준강도 30MPa를 갖는 콘크리트의 역학적 특성, 휨 및 압축거동에 미치는 영향에 대하여 분석한다. 실험에서 형상비가 상이한 3종류의 섬유가 사용되었다. 섬유의 형상비는 64, 67, 80이며 섬유의 보강량은 체적비 0.25%, 0.50% 및 0.75%가 선정되었다. 강섬유 보강 콘크리트의 휨거동은 하중-균열폭 곡선, 휨강도 및 휨인성이 평가되었다, 압축거동은 압축응력-변형률 관계 곡선, 압축강도 및 인성 등이 평가되었다. 실험결과로부터 강섬유 보강 콘크리트의 휨강도, 휨인성 및 파괴에너지는 강섬유 혼입량이 증가됨에 따라 향상되는 것으로 나타났다. 그러나 형상 64와 67인 강섬유로 보강된 콘크리트의 역학적 특성은 큰 차이를 보이지 않았다. 이 연구에서 검토된 강섬유 보강 콘크리트의각 배합에 대한 유럽기준(MC2010)에 의한 산정된 휨 잔여강도는 기준에서 인장 철근 또는 보강 매쉬를 대체할 수 있는 한계기준을 모두 충족하는 것으로 나타났다.

초고강도 강섬유 보강 콘크리트의 휨특성에 관한 연구 (A Study on the flexural Behavior of Ultra-Strength Steel Fiber Reinforced Concrete)

  • 류금성;박정준;강수태;고경택;김성욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.333-336
    • /
    • 2005
  • This paper presents a comparative evaluation of eight different types of steel fibers used as reinforcing material in concrete beams. The fibers which used ultra-strength steel fiber reinforced concrete were fiber length of 30 to 60mm, aspect ratio of 43 to 86, W/B ratio 0.16 to 0.30, fiber types of both ends hooked and straight shape and fiber volume fraction of 1 to 5$\%$. As for the test results, it estimated the influence of fiber volume, length and aspect ratio on the mechanical properties of high toughness concrete, the mechanical properties improved according to increase fiber volume, to increase aspect ratio and to long fiber length. And the resonable fiber volume in high toughness concrete was analyzed 2$\%$ based on the results of mechanical properties.

  • PDF

불연속 복합체의 재료역학적 접근을 통한 응력해석 (Stress Analysis of a Discontinuous Composite Using Mechanics of Materials Approach)

  • 김홍건;양성모;노홍길
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.63-69
    • /
    • 2003
  • In discontinuous composite mechanics, shear lag theory is one of the most popular model because of its simplicity and accuracy. However, it does not provide sufficiently accurate strengthening predictions in elastic regime then the fiber aspect ratio is small. This is due to its neglect of stress transfer across the fiber ends and the stress concentrations that exist in the matrix regions near the fiber ends. To overcome this shortcoming, a more simplified shear lag model introducing the stress concentration factor which is a function of several variables, such as the modulus ratio, the fiber volume fraction, the fiber aspect ratio, is proposed. It is found that the modulus ratio($E_f$/$E_m$) is the essential variable among them. Thus, the stress concentration factor is expressed as a function of modulus ratio in the derivation. It is found that the proposed model gives a good agreement with finite element results and has the capability to correctly predict the values of interfacial shear stresses and local stress variations in the small fiber aspect ratio regime.

강섬유 특성에 따른 고강도 콘크리트의 압축 및 휨 거동 (Compressive and Flexural Behavior of High-Strength Concrete Incorporating Different Types of Hooked-End Steel Fibers)

  • 정우진;김애화;윤현도
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.69-78
    • /
    • 2023
  • This paper investigates the effects of aspect ratio and volume fraction of hooked-end normal-strength steel fibers on the compressive and flexural properties of high-strength concrete with specified compressive strength of 60 MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were considered and three volume fractions of 0.25%, 0.50% and 0.75% for each steel fiber were respectively added into each high-strength concrete mixture. The test results indicated that the addition of normal-strength steel fibers is effective to improve compressive and flexural properties of high-strength concrete but fiber aspect ratio had little effect on the modulus of elasticity and compressive strength. As steel fiber content and aspect ratio increased, flexural beahvior of notched high-strength concrete beams was effectively improved.

강섬유 계수 및 혼입률을 고려한 SFRC의 강도 및 변형 특성 (Characteristic Strength and Deformation of SFRC Considering Steel Fiber Factor and Volume fraction)

  • 이현호;이화진
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.759-766
    • /
    • 2004
  • 강섬유(steel fiber) 보강은 전단 강도와 같은 콘크리트 구조 부재의 많은 공학적 특성들을 현저히 향상시킨다. 본 연구는 구조 부재로의 실용적 사용을 위해 강섬유의 형상, 형상비, 혼입률, 강섬유 계수를 강도 특성 및 변형 특성의 수준으로 평가하였다. 기존 연구 및 본 연구의 재료 시험 결과들을 평가한 결과, 양단고리형 및 최대골재치수의 1.5배 이상되는 길이의 강섬유의 강도 보강효과가 우수한 것으로 판단된다. 또한 강도 및 변형 능력에 대한 상세 시험결과로부터, 형상비 75, 혼입률 $1.5\%$가 적절한 것으로 판단된다. 결론적으로 재료 성능 시험 결과들을 통계적로부터 추정한 결과, 강섬유 계수, 할렬인장강도, 휨강도가 SFRC의 주요한 특성인자로 판단된다.