• Title/Summary/Keyword: fiber analysis

Search Result 3,991, Processing Time 0.027 seconds

Test Method to Evaluate the Fiber Material Properties of Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 섬유 방향 물성 평가 기법)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • The fiber material properties, elastic constant and strength, are the most important factors among the various material properties for the design of composite pressure vessel, because of it's dominant influence on the performance of composite pressure vessel. That is, the deformation and burst pressure of pressure vessel highly affected by the fiber material properties. Therefore, the establishment of test method for exact fiber material properties is a priority item to design a composite pressure vessel. However, the fiber material properties in filament wound pressure vessel is very sensitive on various processing variables (equipment, operator and environmental condition etc..) and size effect, so that it isn't possible to measure exact fiber material properties from existing test methods. The hydro-burst test with full scale pressure vessel is a best method to obtain fiber material properties, but it requires a enormous cost. Thus, this paper suggests a newly developed test method, hoop ring test, that is capable of pressure testing with ring specimens extracted from real composite pressure vessel. The fiber material properties from hoop ring test method showed good agreement with the results of hydro-burst test with full scale composite pressure vessels.

Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites (황마 단섬유 강화 폴리유산 샌드위치 복합재의 제작 및 굽힘 특성)

  • Lee, Gyu Hee;Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • In this study, we fabricated jute fiber reinforced polylactic acid (PLA) composite in the form of sandwich panel structure which includes core foam of chopped jute fiber reinforced PLA and outer skin layer of continuous glass fiber reinforced PLA. Flexural properties of the composite were assessed for different jute fiber weight fractions. Density of the core foam ranged from 0.31 to 0.67 $g/cm^3$ and void content fraction 0.51 to 0.71. The maximum flexural strength was 92.7 MPa at 12.5 wt.% of jute fiber content, and the maximum flexural modulus was 7.58 GPa at 30.0 wt.%. Cost analysis was also conducted. The cost to enhance the flexural strength of the applied structure was estimated to be $0.010USD/m^3/MPa$ for 12.5 wt.% fiber content.

Estimates of Genetic Parameters and Genetic Trends for Production Traits of Inner Mongolian White Cashmere Goat

  • Bai, Junyan;Zhang, Qin;Li, Jinquan;Dao, Er-Ji;Jia, Xiaoping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2006
  • Two different animal models, which differ in whether or not taking maternal genetic effect into account, for estimating genetic parameters of cashmere weight, live body weight, cashmere thickness, staple length, fiber diameter, and fiber length in Inner Mongolia White Cashmere Goat were compared via likelihood ratio test. The results indicate that maternal genetic effect has significant influence on live body weight and cashmere thickness, but no significant influence on the other traits. Using models suitable for each trait, both genetic parameters and trends were analyzed with the MTDFREML program. Heritability estimates from single trait models for cashmere weight, live body weight, cashmere thickness, staple length, fiber diameter and fiber length were found to be 0.30, 0.07, 0.21, 0.29, 0.28 and 0.21, respectively. Genetic correlation estimates from two-trait models between live body weight and all other traits (-0.06~0.07) was negligible, as were those between fiber diameter and all other traits (-0.01~0.03) except cashmere thickness (0.19). Cashmere weight and staple length had moderate to low genetic correlations with other traits (-0.24~0.39 and -0.24~0.34, respectively) except for live body weight and fiber diameter. Cashmere thickness had a strong genetic correlation with fiber length (0.81), and low genetic correlation with other traits (0.19~0.34) except live body weight. Genetic trend analysis suggests that selection for cashmere weight was very effective, which has led to the slow genetic progress of cashmere thickness and fiber length due to their genetic correlations with cashmere weight. The selection for live body weight was not effective, which was consistent with its low inheritability.

Fiber Morphology and Physical Characteristics of Gigantochloa atter at Three Different Ages and Heights of Culms for Better Utilization

  • Marsoem, Sri Nugroho;Setiaji, Fajar;Kim, Nam-Hum;Sulistyo, Joko;Irawati, Denny;Nugroho, Widyanto Dwi;Pertiwi, Yus Andini Bekti
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.145-155
    • /
    • 2015
  • Fiber morphology and basic characteristics of Legi bamboos (Gigantochloa atter) growing on Yogyakarta were studied considering their age and height positions in the culms. Culms of 4, 16, and 40 months were harvested, and their total lengths were measured. The length, diameter, and wall thickness of each internode were measured. All the sample culms were divided into three different parts along the height, and their fiber dimension and physical properties were observed. The data obtained were analyzed by analysis of variance. The results showed that the culms had a diameter of 5.8 to 10.8 cm. The lowest internodes always showed the shortest length and the thickest wall. The culms had an average fiber length of 2.41 mm and Runkel ratio of 0.61. Fiber length was affected by the height, while fiber diameter, lumen diameter, and fiber wall thickness were affected significantly by the age of the culms. The culms had high green moisture content (GMC) of 157.89%, and basic density (BD) of $456.67kg.m^{-3}$, a total longitudinal shrinkage of 0.35%, and relatively low R/T shrinkage ratio. The interactions between age and height were affected GMC and BD.

The Composition of Dietary Fiber on New Vegetables (쌈샐러드 채소류의 일반성분과 식이섬유에 관한 연구)

  • 김지민;김대진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.5
    • /
    • pp.852-856
    • /
    • 2004
  • This study was conducted to determine on the proximate analysis and the several structural carbohydrate for 11 kinds of new vegetables. The samples were dried at 6$0^{\circ}C$ for 24 hrs and ground to pass a 0.5 mm screen. The crude protein and crude fat contents of new vegetables were 2∼3 times higher than those of grain as dry matter basis. However the crude ash content of new vegetables was 7 times higher than that of grain. Total dietary fiber was ranged from 32.61% (Costamary) to 41,22% (Treviso) as dry matter basis. Insoluble dietary fiber was ranged from 21.58% (Red leaf beet) to 28.95% (Treviso) as dry matter basis. Soluble dietary fiber was ranged from 6.60% (Nakai) to 14.70% (Common danelion) as dry matter basis. Total carbohydrates was ranged from 73.62% (Salad bowl) to 36.30% (Red leaf beet) as dry matter basis. Neutral detergent fiber was ranged from 48.83% (Nakai) to 29.60% (Red leaf beet) as dry matter basis. Acid detergent lignin was ranged from 27.65% (Salad bowl) to 2.92% (Corn salad) as dry matter basis. Hemicellulose was ranged from 22.55% (Nakai) to 2.15% (Salad bowl).

Visco-Elastic Properties of Glass Fiber Manufactured by Slag Material (슬래그 원료를 사용해서 제조된 유리섬유의 점탄성 특성)

  • Lee, Ji-Sun;Kim, Sun-Woog;Ra, Yong-Ho;Lee, Youngjin;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.477-482
    • /
    • 2019
  • This study investigated the influence of the viscoelastic property of slag when producing glass fiber, MFS631 with 60% of manganese slag, 30% of steel slag, and 10% of silica stone. To fabricate the MFS631 glass bulk, slag materials were placed in an alumina crucible, melted at $1,550^{\circ}C$ for 2 h, and then annealed at $600^{\circ}C$ for 2 h. It was found that glass is non-crystalline through X-ray diffraction analysis. MFS631 fiber was produced at speed in the range of 100~300 rpm at $1,150^{\circ}C$. The loss modulus (G") and storage modulus (G') of the produced glass fiber were evaluated at high temperatures. G' and G" of MFS631 were greater than $893^{\circ}C$, and the modulus value was 136,860 pa. This is similar to the results of a general E-glass fiber graph. Therefore, it was concluded that its spinnability is similar to that of E-glass fiber; therefore, it can be commercialized.

The Effect of Fiber Volume Fraction Non-uniformity through Thickness Direction on the Torsional Buckling Load of Cylindrical Composite Lattice Structure (두께방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향)

  • Min-Hyeok Jeon;Hyun-Jun Cho;Yeon-Ju Kim;Mi-Yeon Lee;In-Gul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.80-85
    • /
    • 2023
  • A cylindrical composite lattice structure is manufactured by filament winding. The distribution of nonuniform fiber volume fraction induced by the manufacturing process can be observed. The stiffness and buckling characteristics can be influenced by non-uniform fiber volume fraction. In this paper, the effect of non-uniform fiber volume fraction through thickness direction on the torsional buckling load of the cylindrical composite lattice structure was examined. The stiffness variation induced by the non-uniform fiber volume fraction was applied to the finite element model, and buckling analysis was performed. The variations of buckling load with variations of fiber volume fraction were compared. The non-uniform fiber volume fraction reduced the torsional buckling load of the composite lattice structure.

Effect of Different Irrigation Levels on the Fiber Content of Sweetpotato Root

  • Won Park;Hyeong-Un Lee;Tae Hwa Kim;Kyo Hwui Lee;Sang Sik Nam;Mi Nam Chung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.49-49
    • /
    • 2022
  • One of the major problems with sweetpotato (Ipomoea batats Lam.) is the tough thread tissue that occurs in the storage root, which has a negative impact on the sales of sweet potato because it impairs the texture during cooking and the processing quality. The fiber contents in storage roots of sweetpotato is affected by cultivation conditions and environment. To investigate the effect of fiber generation at different levels of irrigation, the sweetpoatoto "Hogammi" was transplanted in greenhouse. Sweetpotato was grown in styrofoam beds(W1605*D330*H300mm) to block moisture flowing from the outside. The irrigation was carried out as 3 levels (5,10, and 20 mm through drip irrigation facilities) at 20-day intervals. Five plants were harvested per plot at 90, 100 and 120 days after transplanting (DAT). The size of the storage root was large in the order of irrigation conditions 10mm>20mm>5mm treatment. And the longer cultivation period, the larger size of the storage root was observed. As a result of the analysis of the fiber content, it showed a tendency to decrease as the cultivation period increased (90days→120days). In addition, the fiber contents of sweetpotato harvested at 90, 100 and 120 DAT in the level of 5 mm irrigation plot were 351, 324 and 207 mg/100g, respectively, which were higher than those of other irrigation level plots. During all cultivation periods, the 10mm treatment group showed the lowest fiber content of 280, 228 and 127 mg/100g. At 20 mm irrigation level, the fiber content was less than that of 5mm irrigation level, but showed a tendency to increase compared to that of 10 mm irrigation level. These results suggested that drought stress or excessive-irrigation increases the fiber content of sweetpotato, which reduces their commercial value.

  • PDF

A study of glass and carbon fibers in FRAC utilizing machine learning approach

  • Ankita Upadhya;M. S. Thakur;Nitisha Sharma;Fadi H. Almohammed;Parveen Sihag
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.63-86
    • /
    • 2024
  • Asphalt concrete (AC), is a mixture of bitumen and aggregates, which is very sensitive in the design of flexible pavement. In this study, the Marshall stability of the glass and carbon fiber bituminous concrete was predicted by using Artificial Neural Network (ANN), Support Vector Machine (SVM), Random Forest (RF), and M5P Tree machine learning algorithms. To predict the Marshall stability, nine inputs parameters i.e., Bitumen, Glass and Carbon fibers mixed in 100:0, 75:25, 50:50, 25:75, 0:100 percentage (designated as 100GF:0CF, 75GF:25CF, 50GF:50 CF, 25GF:75CF, 0GF:100CF), Bitumen grade (VG), Fiber length (FL), and Fiber diameter (FD) were utilized from the experimental and literary data. Seven statistical indices i.e., coefficient of correlation (CC), mean absolute error (MAE), root mean squared error (RMSE), relative absolute error (RAE), root relative squared error (RRSE), Scattering index (SI), and BIAS were applied to assess the effectiveness of the developed models. According to the performance evaluation results, Artificial neural network (ANN) was outperforming among other models with CC values as 0.9147 and 0.8648, MAE values as 1.3757 and 1.978, RMSE values as 1.843 and 2.6951, RAE values as 39.88 and 49.31, RRSE values as 40.62 and 50.50, SI values as 0.1379 and 0.2027 and BIAS value as -0.1 290 and -0.2357 in training and testing stage respectively. The Taylor diagram (testing stage) also confirmed that the ANN-based model outperforms the other models. Results of sensitivity analysis showed that the fiber length is the most influential in all nine input parameters whereas the fiber combination of 25GF:75CF was the most effective among all the fiber mixes in Marshall stability.

Analysis of Trace Trichlorosilane in High Purity Silicon Tetrachloride by Near-IR Spectroscopy (근적외선 분광법을 이용한 고순도 SiCI4 중의 미량 불순물 SiHCI3의 분석)

  • Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.87-90
    • /
    • 2002
  • The content of $SiHCl_3$ as a trace impurity in $SiCl_4$ was analyzed by Near IR spectrophotometer with optical fiber. The strong absorption bands of $5345{\sim}5116cm^{-1}$ and $4848{\sim}4349cm^{-1}$ were used for analysis of $SiHCl_3$, and the detection limit of impurity $SiCl_3$ was appeared to be 0.005 % in the spectrum. The quantitative analysis by Near IR spectrophotometry showed the analytical possibility of trace impurity in $SiCl_4$ without sample pre-treatment not only in the laboratory but also in the field.