• 제목/요약/키워드: fiber analysis

Search Result 3,987, Processing Time 0.033 seconds

A Study on the Fracture Characteristics of CFRP by Acoustic Emission (2) (음향방출법에 의한 탄소섬유강화 플라스틱의 파괴특성에 관한 연구 (2))

  • 윤종희;이장규;박성완;우창기;김봉각;조진호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.58-63
    • /
    • 2004
  • This study is to investigate a fracture characteristics of carbon fiber reinforced plastics (CFRP) under the tensile loading as a function of acoustic emission (AE) according to the frequency analysis (transient mode) and AE source location (location mode). It was found that the fracture mechanism of AE frequency analysis was a useful tool for the estimation of different type of fracture in CFRP, i.e., matrix(epoxy resin) cracking, delamitation and fiber breakage same as AE amplitude distribution.

  • PDF

Fiber reinforced concrete properties - a multiscale approach

  • Gal, Erez;Kryvoruk, Roman
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.525-539
    • /
    • 2011
  • This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.

The Evaluation of Mechanical Properties of TiNi/Al 6061 Shape Memory Composites by Using Experimental and Finite Element Analysis (TiNi/Al 6061 형상기억복합재료의 기계적특성에 관한 실험 및 해석적 평가)

  • 박동성;박영철;이동화;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.687-691
    • /
    • 2001
  • Al alloy matrix composite with TiNi shape memory fiber as reinforcement has been fabricated by hot pressing to investigate mechanical properties. The stress-strain behavior of the composites was evaluated at temperatures between 363K and room temperature as a function of pre-strain by using experimental and finite element analysis, and both cases showed that the tensile stress at 363K was higher than that of the room temperature. Especially, the tensile stress of this composite increases with increasing the amount of pre-strain, and it also depends on the volume fraction of fiber and heat treatment. The smartness of the composite is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being pre-strained.

  • PDF

The Frequency Characteristics of Elastic Wave by Crack Propagation of SiC/SiC Composites

  • Kim, J.W.;Nam, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.110-114
    • /
    • 2012
  • We studied on the nondestructive evaluation of the elastic wave signal of SiC ceramics and SiC/SiC composite ceramics under monotonic tensile loading. The elastic wave signal of cross and unidirectional SiC/SiC composite ceramics were obtained by pencil lead method and bending test. It was applied for the time-frequency method which used by the discrete wavelet analysis algorithm. The time-frequency analysis provides time variation of each frequency component involved in a waveform, which makes it possible to evaluate the contribution of SiC fiber frequency. The results were compared with the characteristic of frequency group from SiC slurry and fiber. Based on the results, if it is possible to shift up and design as a higher frequency group, we will can make the superior material better than those of exiting SiC/SiC composites.

  • PDF

A Defect Inspection Algorithm Using Multi-Resolution Analysis based on Wavelet Transform (웨이블릿 다해상도 분석에 의한 디지털 이미지 결점 검출 알고리즘)

  • Kim, Kyung-Joon;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • A real-time inspection system has been developed by combining CCD based image processing algorithm and a standard lighting equipment. The system was tested for defective fabrics showing nozzle contact scratch marks, which were one of the frequently occurring defects. Multi-resolution analysis(MRA) algorithm were used and evaluated according to both their processing time and detection rate. Standard value for defective inspection was the mean of the non-defect image feature. Similarity was decided via comparing standard value with sample image feature value. Totally, we achieved defective inspection accuracy above 95%.

Characteristics of Plasma Emission Signals in Fiber Laser Welding of API Steel (IV) - Correlation of Keyhole's Periodic Motion and FFT Analysis Results - (API강재의 파이버레이저 용접시 유기하는 플라즈마의 방사특성 (IV) - 키홀의 주기운동과 FFT분석의 상관성 -)

  • Kim, Jong-Do;Lee, Chang-Je;Suh, Jeong
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.28-33
    • /
    • 2013
  • The effects of laser welding beam quality is very large. However, not an analysing case was found for the difference on the plasma emission signal during laser welding according to the beam quality. Therefore, in this study, we compared and evaluated penetration and signal change according to the beam quality at the a similar wavelength band by using a fiber laser and Nd:YAG laser. In addition, we took high speed videography in order to make sure that FFT analysis reflects the actual motion period of keyhole and found the period of video analysis and FFT mostly matched. As a result, it is expected to secure higher reliability than evaluating signal intensity when appling FFT to monitoring.

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

Multiple cracking analysis of HTPP-ECC by digital image correlation method

  • Felekoglu, Burak;Keskinates, Muhammer
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.831-848
    • /
    • 2016
  • This study aims to characterize the multiple cracking behavior of HTPP-ECC (High tenacity polypropylene fiber reinforced engineered cementitious composites) by Digital Image Correlation (DIC) Method. Digital images have been captured from a dogbone shaped HTPP-ECC specimen exhibiting 3.1% tensile ductility under loading. Images analyzed by VIC-2D software and ${\varepsilon}_{xx}$ strain maps have been obtained. Crack widths were computed from the ${\varepsilon}_{xx}$ strain maps and crack width distributions were determined throughout the specimen. The strain values from real LVDTs were also compared with virtual LVDTs digitally attached on digital images. Results confirmed that it is possible to accurately monitor the initiation and propagation of any single crack or multiple cracks by DIC at the whole interval of testing. Although the analysis require some post-processing operations, DIC based crack analysis methodology can be used as a promising and versatile tool for quality control of HTPP-ECC and other strain hardening composites.

Analysis of DDS Sampling Method and Harmonic Composition

  • Zhi-lai Zhang;Shao-jun Jiang;Li-li Liang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Through theoretical proof and algorithm design, this paper numerically demonstrates that the three sampling methods of DDS are equivalent in amplitude-frequency characteristics. Depending on theoretical analysis, the article obtains the conclusion that 2 points are optimal when sampling at 2, 3, and 4 points. Built on the data results, this paper obtains the fractional form of the amplitude and phase of the DDS sampled signal; in addition, this paper also obtains the design parameters of the DDS post-stage filter. It also gives a control method for the calculation error when addressing this issue.

Moment-Curvature Analysis of Steel Fiber-Reinforced Ultra High Performance Concrete Beams with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 보의 모멘트-곡률 해석)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.237-248
    • /
    • 2011
  • Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling and numerical analysis method are necessary for the prediction of structural performance of steel fiber-reinforced concrete. The numerical method to predict the flexural behavior is proposed in this study. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack opening displacement relationship is considered. Thereafter material modeling is performed considering tension softening. The comparison of moment-curvature curves of the numerical analysis results with the test results indicates a reasonable agreement. Therefore, the present numerical results prove that good prediction of flexural behavior of steel fiber-reinforced ultra high performance concrete beams can be achieved by employing the proposed method.