• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.033 seconds

Retrospective clinical and radiographic evaluation of restored endodontically treated teeth

  • Paula Pontes Garcia ;Aline Cappoani ;Ricardo Susin Schelbauer ;Gisele Maria Correr ;Carla Castiglia Gonzaga
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.49.1-49.11
    • /
    • 2020
  • Objectives: The aim of this study was to perform a clinical and radiographic analysis of endodontically treated teeth (ETT) restored with cast metal posts (CMPs) or prefabricated glass fiber posts (GFPs) and crowns. Materials and Methods: Fifty ETT were restored with 25 CMPs and 25 GFPs at a private dental clinic between 2001 and 2016. The restorations consisted of 12 all-ceramic crowns, 31 metal-ceramic crowns, and 7 composite resin crowns. Demographic data, type of teeth, type of post-and-core system, time of placement, crown restorations, the number of proximal contacts, the type of antagonist, and reports of any complications after post-and-core placement were recorded for each patient. Assessments were performed at baseline (radiographic) and follow-up (radiographic and clinical). Data were analyzed by the McNemar test, the Pearson χ2 test, and Kaplan-Meier survival curves (α = 0.05). The mean follow-up was 67.6 months. Results: No significant difference was observed for any of the radiographic parameters when the baseline and final radiographs were compared. In the clinical evaluation, anatomical form (p = 0.009) and occlusion (p = 0.001) showed significant differences according to the type of crown restoration; specifically, metal-ceramic and all-ceramic crowns outperformed composite resin crowns. Conclusions: CMPs and GFPs showed favorable results for restoring ETT after 6 years of follow-up. All-ceramic and metal-ceramic crowns showed higher survival rates and better clinical outcomes.

The crack propagation of fiber-reinforced self-compacting concrete containing micro-silica and nano-silica

  • Moosa Mazloom;Amirhosein Abna;Hossein Karimpour;Mohammad Akbari-Jamkarani
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.495-511
    • /
    • 2023
  • In this research, the impact of micro-silica, nano-silica, and polypropylene fibers on the fracture energy of self-compacting concrete was thoroughly examined. Enhancing the fracture energy is very important to increase the crack propagation resistance. The study focused on evaluating the self-compacting properties of the concrete through various tests, including J-ring, V-funnel, slump flow, and T50 tests. Additionally, the mechanical properties of the concrete, such as compressive and tensile strengths, modulus of elasticity, and fracture parameters were investigated on hardened specimens after 28 days. The results demonstrated that the incorporation of micro-silica and nano-silica not only decreased the rheological aspects of self-compacting concrete but also significantly enhanced its mechanical properties, particularly the compressive strength. On the other hand, the inclusion of polypropylene fibers had a positive impact on fracture parameters, tensile strength, and flexural strength of the specimens. Utilizing the response surface method, the relationship between micro-silica, nano-silica, and fibers was established. The optimal combination for achieving the highest compressive strength was found to be 5% micro-silica, 0.75% nano-silica, and 0.1% fibers. Furthermore, for obtaining the best mixture with superior tensile strength, flexural strength, modulus of elasticity, and fracture energy, the ideal proportion was determined as 5% micro-silica, 0.75% nano-silica, and 0.15% fibers. Compared to the control mixture, the aforementioned parameters showed significant improvements of 26.3%, 30.3%, 34.3%, and 34.3%, respectively. In order to accurately model the tensile cracking of concrete, the authors used softening curves derived from an inverse algorithm proposed by them. This method allowed for a precise and detailed analysis of the concrete under tensile stress. This study explores the effects of micro-silica, nano-silica, and polypropylene fibers on self-compacting concrete and shows their influences on the fracture energy and various mechanical properties of the concrete. The results offer valuable insights for optimizing the concrete mix to achieve desired strength and performance characteristics.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images (삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측)

  • Hangil You;Gun Jin Yun
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.40-45
    • /
    • 2024
  • In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.

Anatomical study of the bone morphology of the anterior talofibular ligament attachment

  • Hitomi Fujishiro;Akimoto Nimura;Mizuki Azumaya;Soichi Hattori;Osamu Hoshi;Keiichi Akita
    • Anatomy and Cell Biology
    • /
    • v.56 no.3
    • /
    • pp.334-341
    • /
    • 2023
  • Anterior talofibular ligament (ATFL) injuries are the most common cause of ankle sprains. To ensure anatomically accurate surgery and ultrasound imaging of the ATFL, anatomical knowledge of the bony landmarks around the ATFL attachment to the distal fibula is required. The purpose of the present study was to anatomically investigate the ATFL attachment to the fibula with respect to bone morphology and attachment structures. First, we analyzed 36 feet using micro-computed tomography. After excluding 9 feet for deformities, the remaining 27 feet were used for chemically debrided bone analysis and macroscopic and histological observations. Ten feet of living specimens were observed using ultrasonography. We found that a bony ridge was present at the boundary between the attachments of the ATFL and calcaneofibular ligament (CFL) to the fibula. These two attachments could be distinguished based on a difference in fiber orientation. Histologically, the ATFL was attached to the anterodistal part of the fibula via fibrocartilage anterior to the bony ridge indicating the border with the CFL attachment. Using ultrasonography in living specimens, the bony ridge and hyperechoic fibrillar pattern of the ATFL could be visualized. We established that the bony ridge corresponded to the posterior margin of the ATFL attachment itself. The ridge was obvious, and the superior fibers of the ATFL have directly attached anteriorly to it. This bony ridge could become a valuable and easy-to-use landmark for ultrasound imaging of the ATFL attachment if combined with the identification of the fibrillar pattern of the ATFL.

Design, simulation and experimental analysis of fiber-reinforced silicone actuators

  • Sina Esmalipour;Masoud Ajri;Mehrdad Ekhtiari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.211-225
    • /
    • 2024
  • Soft bending actuators have gained significant interest in robotic applications due to their compliance and lightweight nature. Their compliance allows for safer and more natural interactions with humans or other objects, reducing the risk of injury or damage. However, the nonlinear behaviour of soft actuators presents challenges in accurately predicting their bending motion and force exertion. In this research, a new comprehensive study has been conducted by employing a developed 3D finite element model (FEM) to investigate the effect of geometrical and material parameters on the bending behaviour of a soft pneumatic actuator reinforced with Kevlar fibres. A series of experiments are designed to validate the FE model, and the FE model investigates the improvement of actuator performance. The material used for fabricating the actuator is RTV-2 silicone rubber. In this study, the Cauchy stress was expanded for hyperelastic models and the best model to express the stress-strain behaviour based on ASTM D412 Type C tensile test for this material has been obtained. The results show that the greatest bending angle was achieved for the semi-elliptical actuator made of RTV2 material with a pitch of 1.5 mm and second layer thickness of 1 mm. In comparison, the maximum response force was obtained for the semi-elliptical actuator made of RTV2 material with a pitch of 6 mm and a second layer thickness of 2 mm. Additionally, this research opens up new possibilities for development of safer and more efficient robotic systems that can interact seamlessly with humans and their environment.

Analysis of Major Error Factors in Coherent Beam Combination: Phase, Tip Tilt, Polarization Angle, and Beam Quality

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Yoonchan Jeong
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.406-415
    • /
    • 2024
  • The major error factors that degrade the efficiency of coherent beam combining (CBC) are numerically studied in a comprehensive manner, paying particular attention to phase, tip-tilt, polarization angle, and beam quality. The power in the bucket (PIB), normalized to the zero-error PIB, is used as a figure of merit to quantify the effect of each error factor. To maintain a normalized PIB greater than or equal to 95% in a 3-channel CBC configuration, the errors in phase, tip-tilt, and polarization angle should be less than 1.06 radians, 1.25 ㎛, and 1.06 radians respectively, when each of the three parameters is calculated independently with the other two set to zero. In a worst-case scenario of the composite errors within the parameter range for the independent-95%-normalized-PIB condition, the aggregate effect would reduce the normalized PIB to 83.8%. It is noteworthy that the PIB performances of a CBC system, depending on phase and polarization-angle errors, share the same characteristic feature. A statistical approach for each error factor is also introduced, to assess a CBC system with an extended number of channels. The impact of the laser's beam-quality factor M2 on the combining efficiency is also analyzed, based on a super-Gaussian beam. When M2 increases from 1 to 1.3, the normalized PIB is reduced by 2.6%, 11.8%, 12.8%, and 13.2% for a single-channel configuration and 3-, 7-, and 19-channel CBC configurations respectively. This comprehensive numerical study is expected to pave the way for advances in the evaluation and design of multichannel CBC systems and other related applications.

Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석)

  • Woo, Sang-Kyun;Hong, Ki-Nam;Han, Sang-Hoon;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.181-192
    • /
    • 2007
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally suggest the evaluation equations of flexural capacity of RC beams with the aim of application of prestressed CFRP strengthening. The experimental parameters are compressive strength, reinforcement ratio, prestressing level and strengthening methods. The non-prestressed specimens failed on account of separation of the plates from the beams due to premature de-bonding, while most of the prestressed specimens failed due to CFRP plate fracture. The evaluation equations of flexural capacity of RC beams is suggested and these equations have a good reliability in predicting flexural strength of RC beams.

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.