• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.028 seconds

Correlating the Fineness and Residual Gum Content of Degummed Hemp Fibres

  • Beltran, Rafael;Hurren, Christopher J.;Kaynak, Akif;Wang, Xungai
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.129-133
    • /
    • 2002
  • It is well known residual gum exists in degummed or rotted hemp fibers. Gum removal results in improvement in fiber fineness and the properties of the resultant hemp yams. However, it is not known what correlation if any exists between the residual gum content in retted hemp fibers and the fiber fineness, described in terms of fiber width in this paper. This study examined the mean width and coefficient of variation (CV) of fiber width of seventeen chemically rotted hemp samples with reference to residual gum content. The mean and CV of fiber width were obtained from an Optical fiber diameter analyser (OFDA 100). The linear regression analysis results show that the mean fiber width is directly proportional to the residual gum content. A slightly weaker linear correlation also exists between the coefficient of variation of fiber width and the residual gum content. The strong linear co-relation between the mean of fiber width and the residual gum content is a significant outcome, since testing for fiber width using the OFDA is a much simpler and quicker process than testing the residual gum content. Scanning Electron Microscopy (SEM) reinforces the OFDA findings. SEM micrographs show a flat ribbon like fiber cross-section hence the term \"fiber width\" is used instead of fiber diameter. Spectral differences in the untreated dry decorticated skin samples and chemically treated and subsequently carded samples indicate delignification. The peaks at $1370cm^{-1}$, $1325cm^{-1}$, $1733cm^{-1}$, and $1600cm^{-1}$ attributed to lignin in the untreated samples are missing from the spectra of the treated samples. The spectra of the treated samples are more amine-dominated with some of the OH character lost.cter lost.

An in Depth Study of Crystallinity, Crystallite Size and Orientation Measurements of a Selection of Poly(Ethylene Terephthalate) Fibers

  • Karacan Ismail
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.186-199
    • /
    • 2005
  • A selection of commercially available poly(ethy1ene terephtha1ate) fibers with different degrees of molecular alignment and crystallinity have been investigated utilizing a wide range of techniques including optical microscopy, infrared spectroscopy together with thermal and wide-angle X-ray diffraction techniques. Annealing experiments showed increased molecular alignment and crystallinity as shown by the increased values of birefringence and melting enthalpies. Crystallinity values determined from thermal analysis, density, unpolarized infrared spectroscopy and X-ray diffraction are compared and discussed in terms of the inherent capabilities and limitations of each measurement technique. The birefringence and refractive index values obtained from optical microscopy are found to decrease with increasing wavelength of light used in the experiments. The wide-angle X-ray diffraction analysis shows that the samples with relatively low orientation possess oriented non-crystalline array of chains whereas those with high molecular orientation possess well defined and oriented crystalline array of chains along the fiber axis direction. X-ray analysis showed increasing crystallite size trend with increasing molecular orientation. SEM images showed micro-cracks on low oriented fiber surfaces becoming smooth on highly oriented fiber surfaces. Excellent bending characteristics were observed with knotted fibers implying relatively easy fabric formation.

An Elastic-Plastic Stress Analysis in Silicon Carbide Fiber Reinforced Magnesium Metal Matrix Composite Beam Having Rectangular Cross Section Under Transverse Loading

  • Okumus, Fuat
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.221-229
    • /
    • 2004
  • In this work, an elastic-plastic stress analysis has been conducted for silicon carbide fiber reinforced magnesium metal matrix composite beam. The composite beam has a rectangular cross section. The beam is cantilevered and is loaded by a single force at its free end. In solution, the composite beam is assumed perfectly plastic to simplify the investigation. An analytical solution is presented for the elastic-plastic regions. In order to verify the analytic solution results were compared with the finite element method. An rectangular element with nine nodes has been choosen. Composite plate is meshed into 48 elements and 228 nodes with simply supported and in-plane loading condations. Predictions of the stress distributions of the beam using finite elements were overall in good agreement with analytic values. Stress distributions of the composite beam are calculated with respect to its fiber orientation. Orientation angles of the fiber are chosen as $0^{circ},\;30^{circ},\;45^{circ},\;60^{circ}\;and\;90^{circ}$. The plastic zone expands more at the upper side of the composite beam than at the lower side for $30^{circ},\;45^{circ}\;and\;60^{circ}$ orientation angles. Residual stress components of ${\sigma}_{x}\;and \;{\tau}_{xy}$ are also found in the section of the composite beam.

The Study of Hanji and Washi Fiber Orientation using Image analysis (Image analysis에 의한 한지와 화지의 섬유 배향성 연구)

  • Han, Yoon-Hee;Enomae, Toshiharu;Isogai, Akira
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.11a
    • /
    • pp.89-96
    • /
    • 2006
  • To estimate the manufacturing district and generation of ancient paper as a cultural property, fiber orientation is one of the criteria. Image analysis using fast Fourier transform with suitable modifications was demonstrated to be an effective means to determine angle and intensity of fiber orientation as a nondestructive method. Binarization process of microscopic images of paper surface and precise calculation for average Fourier coefficients as an angular distribution by linear interpolation were newly introduced in the procedures to improve the accuracy. This analysis method was applied to digital optical micrographs of paper surfaces. Korea and Japanese traditional hand making papers were well distinguished. Korea and Japanese papers made in the traditional ways showed its own characteristic orientation behavior in accordance with the motion of a bamboo wire.

  • PDF

A fiber beam element model for elastic-plastic analysis of girders with shear lag effects

  • Yan, Wu-Tong;Han, Bing;Zhu, Li;Jiao, Yu-Ying;Xie, Hui-Bing
    • Steel and Composite Structures
    • /
    • v.32 no.5
    • /
    • pp.657-670
    • /
    • 2019
  • This paper proposes a one-dimensional fiber beam element model taking account of materially non-linear behavior, benefiting the highly efficient elastic-plastic analysis of girders with shear-lag effects. Based on the displacement-based fiber beam-column element, two additional degrees of freedom (DOFs) are added into the proposed model to consider the shear-lag warping deformations of the slabs. The new finite element (FE) formulations of the tangent stiffness matrix and resisting force vector are deduced with the variational principle of the minimum potential energy. Then the proposed element is implemented in the OpenSees computational framework as a newly developed element, and the full Newton iteration method is adopted for an iterative solution. The typical materially non-linear behaviors, including the cracking and crushing of concrete, as well as the plasticity of the reinforcement and steel girder, are all considered in the model. The proposed model is applied to several test cases under elastic or plastic loading states and compared with the solutions of theoretical models, tests, and shell/solid refined FE models. The results of these comparisons indicate the accuracy and applicability of the proposed model for the analysis of both concrete box girders and steel-concrete composite girders, under either elastic or plastic states.

Characterization of Reinforcing Efficiency in Hybrid Fiber Reinforced Cementitous pastes (하이브리드 섬유보강 시멘트 페이스트의 보강효율에 대한 특성화)

  • Park, Tae-Hyo;Noh, Myung-Hyun;Park, Choon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.644-647
    • /
    • 2004
  • Modulus of rupture (MOR) and flexural toughness in hybrid fiber reinforced cement pastes mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber) and replaced with silica fume according to the fixed ratio were researched. Reinforcing efficiency in specimens were estimated by two factors, such as strengthening factor $(F_s)$ and toughening factor $(F_t)$, which were calculated from the analysis of variance (ANOVA) of the response values, such as MOR and absorbtion energy $(W_0)$. According to the experimental design by the fractional orthogonal array, nine hybrid fibrous reinforced paste series and one non-reinforced control paste were manufactured. Specimens of each series were tested by the INSTRON Inc. 8502(model) equipment in three-points bending and then measured the load-deflection response relationships. Considerable strengthening of cement pastes resulted in' the case of other factors without carbon fiber and toughening of cement pastes about all factors showed high. Based on the significance of factors related to response values from ANOVA, following assessments were available; $F_s$ or MOR: silica fume $\gg$ steel fiber $\gg$ carbon fiber; $F_t\;or\;W_0$: steel fiber > carbon fiber > silica fume. Optimized composition condition was estimated by steel fiber of $1.5\%$, carbon fiber of $0.5\%$ and silica fume $7.5\%$ in side of strengthening and steel fiber of $1.5\%$, carbon fiber of $0.75\%$ and silica fume $7.5\%$ in side of toughening.

  • PDF

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle (적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구)

  • Park, Jae-Woong;Cheon, Seong-Sik;Cho, Jae-Ung
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • Carbon fiber reinforced plastic (CFRP), one of lightweight materials, is the fiber structure using carbon fiber. It is the composite material that has the characteristics of carbon and plastic. As for the fiber structure, it has the great strength due to fiber direction. CFRP for woven type is used mostly as such a CFRP with lightweight. Woven type is more stable when compared with unidirectional type. On the other hand, woven type is highly priced. Therefore, this study aims to analyze the fiber structure of unidirectional CFRP. In this study, as the stacking angle [0/X/-X/0], X is the variable. This is unidirectional CFRP in which the angle phase of X has been reversed and stacked. By using such a unidirectional CFRP, the analysis model which had a crack at the center as the form of panel with the thickness of 2 mm was used. On analysis, the load is applied on the upper and lower parts being connected with a pin. The damage in the area near center crack was investigated. As for the analysis model, 3D surface model was designed by using CATIA. For CFRP stacking, the stacking direction was determined by using ACP in ANSYS program and the analysis model with two stacks was made. Afterwards, the structural analysis was carried out.

Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.151-158
    • /
    • 2002
  • In the present design concept, the nonlinear behaviour of bridges is at lowed under large earthquake. The nonlinearity is, however, localized like pier, bearing, etc. Especially, pier columns are most important members for seismic performance. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element is used for modelling pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continous bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is analyzed. Second, Linear and nonlinear dynamic analysises using simplified model for longitudinal direction are carried out and the results are analyzed.

  • PDF

Design and Manufacturing of Natural Composite Chemical Container Tank Using Resin Flow Simulation

  • Kim, Myungsub;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • In this study, an investigation on mechanical properties of flax natural fiber composite is performed as a precedent study on the design of eco-friendly structure using flax natural fiber composite. The Vacuum Assisted Resin Transfer Molding-Light (VARTML) manufacturing method is adopted for manufacturing the flax fiber composite panel. The VARTML is a manufacturing process that the resin is injected into the dry layered-up fibers enclosed by a rigid mold tool under vacuum. In this work, the resin flow analysis of VARTM manufacturing method is performed. A series of flax composite panels are manufactured, and several kinds of specimens cut out from the panels are tested to obtain mechanical performance data. Based on this, structural design of chemical storage tank for agricultural vehicle was performed using flax/vinyl ester. After structural design and analysis, the resin flow analysis of VARTM manufacturing method was performed.