• Title/Summary/Keyword: fiber analysis

Search Result 3,987, Processing Time 0.031 seconds

Predicting strength and strain of circular concrete cross-sections confined with FRP under axial compression by utilizing artificial neural networks

  • Yaman S. S. Al-Kamaki;Abdulhameed A. Yaseen;Mezgeen S. Ahmed;Razaq Ferhadi;Mand K. Askar
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.93-122
    • /
    • 2024
  • One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.

Technical Trend of Concrete Member with GFRP Bar and Tension Stiffening Effect (GFRP 보강근 배근 콘크리트 기술동향 및 인장강화 효과 분석)

  • Won-Jun Lee;Seong-Cheol Lee;Jung-Woo Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.433-448
    • /
    • 2024
  • Steel rebar is commonly used as reinforcement in reinforced concrete (RC) structures. However, steel rebar corrodes over time, leading to a significant reduction in structural safety as the structure ages. Therefore, Glass Fiber Reinforced Plastic (GFRP) rebar, which is not prone to corrosion, has gained attention as a replacement for conventional steel reinforcement. This study investigates the fundamental technology required for applying GFRP rebar to concrete members. Based on this, the bond behavior and tension stiffening effect of GFRP-reinforced members were analyzed. The analysis revealed that key properties of GFRP rebar, such as bond behavior, rebar diameter, and reinforcement ratio, are major factors influencing the tension stiffening effect. To further expand the application of GFRP rebar,it is expected that a new model that accurately reflects the tension stiffening effect will be required.

Multivariate Analysis among Leaf/Smoke Components and Sensory Properties about Tobacco Leaves Blending Ratio

  • Lee Seung-Yong;Lee Whan-Woo;Lee Kyung-Ku;Kim Young-Hoh
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.141-152
    • /
    • 2005
  • This study focused on the relationships among leaf and smoke components and sensory properties following tobacco leaf blending. A completely randomized experimental design was used to evaluate components of leaf and smoke and sensory properties for sample cigarettes with four mixtures of flue cured and burley tobacco (40:60, 60:40, 80:20 and 100:0). Eleven leaf components, six smoke components, and eight sensory properties of smoking taste were analyzed. A sensory evaluation method known as quantitative descriptive analysis was used to evaluate perceptual strength on a fifteen score scale. Raw data from ten trained panelists were obtained and statistically analyzed. Based on the MANOVA, clustering analysis, correlation matrix and partial least square (PLS) method were applied to find out which smoke component most affected sensory properties. The PLS method was used to remove the influence between explanatory variables in the leaf, smoke components derived from the results. High correlations (p<0.0l) were found among ten specific leaf and smoke components and sensory attributes. Total nitrogen, ammonia, total volatile base, and nitrate in the leaf were significantly correlated (p<0.05) with impact, bitterness, tobacco taste, irritation, smoke volume, and smoke pungency. From the results of PLS analysis, influence variables are used to explain about the correlation. In terms of bitterness, with only two explanatory variables, Leaf $NO_3$ and Leaf crude fiber were enough for guessing their correlation. In the distance weighted least square fitting analysis, carbon monoxide highly influenced bitterness, hay like taste, and smoke volume.

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

Measurement of the Intestinal Digestibility of Rumen Undegraded Protein Using Different Methods and Correlation Analysis

  • Wang, Y.;Zhang, Y.G.;Liu, Xiaolan;Kopparapu, N.K.;Xin, Hangshu;Liu, J.;Guo, Jianhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1454-1464
    • /
    • 2015
  • Four methods were adopted, including the mobile nylon bag (MNB) method, modified three-step in vitro (MTS) method, original three-step in vitro (OTS) method, and acid detergent insoluble nitrogen (ADIN) estimating method, to evaluate the intestinal digestibility of rumen undegradable protein (DRUP) of 10 types of concentrates and 7 types of roughages. After correlation analysis to determine the DRUP values using the MNB, MTS, OTS, and ADIN methods, the study aimed to find out appropriate methods to replace the MNB method due to its disadvantages such as high price, long time period, and use of a duodenal T-fistula. Three dairy cows with a permanent ruminal fistula and duodenal T-fistula were used in a single-factor experimental design. The results showed that the determined DRUP values using the MNB method for soybean meal, cottonseed meal, rapeseed meal, sunflower meal, corn germ meal, corn, rice bran, barley, wheat bran, corn fiber feed, Alfalfa (Zhao dong), Alfalfa (Long mu 801), Alfalfa (Long mu 803), grass (North), Grass (Inner Mongolia), corn silage and corn straw were 98.13%, 87.37%, 88.47%, 82.60%, 75.40%, 93.23%, 69.27%, 91.27%, 72.37%, 79.03%, 66.72%, 68.64%, 73.57%, 50.47%, 51.52%, 54.05%, and 43.84%, respectively. The coefficient of determination ($R^2=0.964$) of the results between the MTS method and the MNB method was higher than that ($R^2=0.942$) between the OTS method and the MNB method. The coefficient of determination of the DRUP values of the concentrates among the in vitro method (including the MTS and OTS methods) and the MNB method was higher than that of the roughage. There was a weak correlation between the determined DRUP values in concentrates obtained from the ADIN method and those from the MNB method, and there was a significant correlation (p<0.01) between the determined DRUP values of the roughage obtained from the MNB method and those obtained from ADIN method. The DRUP values were significantly correlated with the nutritional ingredients of the feeds. The regression equation was DRUP =100.5566+0.4169CP - 0.4344SP - 0.7102NDF - 0.7950EE ($R^2=0.8668$, p<0.01; CP, crude protein; SP, soluble protein; NDF, neutral detergent fiber; EE, ether extract). It was concluded that both the MTS method and the OTS may suitable to replace the MNB method for determining the DRUP values and the former method was more effective. Only the ADIN method could be used to predict the values of the roughages but conventional nutritional ingredients were available for all of the samples' DRUP.

Cluster Analysis and Growth Characteristics of Hemp (Cannabis sativa L.) Germplasm (저 마약형 대마 유전자원의 생육특성 및 품종군 분류)

  • Moon Youn-Ho;Song Yeon-Sang;Jeong Byeong-Choon;Bang Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.483-490
    • /
    • 2006
  • In order to breed hemp variety with nondrug type adapted to Korea, a total of 44 accessions were introduced from Center for plant breeding and reproduction research (CPRO) In Netherland and evaluated for plant growth characteristics and contents of cannabinoids such as tetrahydrocannbinol (THC), cannabidiol (CBD), Cannabinol (CBN) in Korean climatical and geographical condition. 1. In Korean geographical position which latitude is $34^{\circ}N$, days to flowering and stem length were shorter than in Netherlands which latitude is $52^{\circ}N$. But THC content was not shown significant difference between two areas. 2. Corrected accessions of hemp were classified into 3 variety groups by cluster analysis and 4 accessions including Korean local variety were not classified into any variety group. 3. Most hemp accessions have low THC contents but were not suitable for fiber production in Korea due to short days to flowering and stem length. 4. Among the introduced accessions, IH3 was suitable for breeding material of fiber hemp with non-drug type because of low THC content and similar days to flowering with Korean local variety.

Analytical Method on PSC I Girder with Strengthening of External Tendon (외부강선으로 보강되는 PSC I 합성거더의 해석 기법)

  • Park, Jae-Guen;Lee, Byeong-Ju;Kim, Moon-Young;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.697-704
    • /
    • 2008
  • This paper presents an analytical prediction of Nonlinear characteristics of prestressed concrete bridges by strengthened of externally tendon considering construction sequence, using unbonded tendon element and beam-column element based on flexibility method. Unbonded tendon model can represent unbounded tendon behavior in concrete of PSC structures and it can deal with the prestressing transfer of posttensioned structures and calculate prestressed concrete structures more efficiently. This tendon model made up the several nodes and segment, therefore a real tendon of same geometry in the prestressed concrete structure can be simulated the one element. The beam-column element was developed with reinforced concrete material nonlinearities which are based on the smeared crack concept. The fiber hysteresis rule of beam-column element is derived from the uniaxial constitutive relations of concrete and reinforcing steel fibers. The formulation of beam-column element is based on flexibility. Beam-column element and unbonded tendon element were be involved in A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), that were used the analysis of RC and PSC structures. The proposed numerical method for prestressed concrete structures by strengthened of externally tendon is verified by comparison with reliable experimental results.

Finite Element Analysis of CFRP Frame under Launch and Recovery Conditions for Subsea Walking Robot, Crabster (다관절 복합이동 해저로봇에 적용된 탄소섬유 복합소재 프레임에 대한 진수 및 인양 조건에서의 구조해석)

  • Yoo, Seong-Yeol;Jun, Bong-Huan;Shim, Hyungwon;Lee, Pan-Mook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.419-425
    • /
    • 2014
  • This study applied finite element analysis (FEA) to the body frame of the 200-meter class multi-legged subsea walking robot known as Crabster (CR200). The body frame of the CR200 is modeled after the ribcage of a human so that it can disperse applied external loads. It is made of carbon-fiber-reinforced plastic (CFRP). Therefore, the frame is lighter and stronger than it would be if it were made of other conventional materials. In order to perform FEA for the CFRP body frame, we applied the material properties of the CFRP as obtained from a specimen test to an FE model of CFRP frame. Finally, we performed FEA with respect to the load conditions encountered when the robot is launched into and recovered from the sea. Also, we performed FEA for the frame, assuming that it was fabricated using a conventional material, in order to compare its characteristics with CFRP.

Studies on Predicting Chemical Composition of Permanent Pastures in Hilly Grazing Area Using Near-Infrared Spectroscopy (근적외선 분광법을 이용한 산지방목지 목초시료 화학적 성분 분석에 관한 연구)

  • Park, Hyung-Soo;Lee, Hyo-Jin;Lee, Hyo-won;Ko, Han-Jong;Jeong, Jong-Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.154-160
    • /
    • 2017
  • This study was conducted to find out an alternative way of rapid and accurate analysis of chemical composition of permanent pastures in hilly grazing area. Near reflectance infrared spectroscopy (NIRS) was used to evaluate the potential for predicting proximate analysis of permanent pastures in a vegetative stage. 386 pasture samples obtained from hilly grazing area in 2015 and 2016 were scanned for their visible-NIR spectra from 400~2,400nm. 163 samples with different spectral characteristics were selected and analysed for moisture, crude protein (CP), crude ash (CA), acid detergent fiber (ADF) and neutral detergent fiber (NDF). Multiple linear regression was used with wet analysis data and spectra for developing the calibration and validation mode1. Wavelength of 400 to 2500nm and near infrared range with different critical T outlier value 2.5 and 1.5 were used for developing the most suitable equation. The important index in this experiment was SEC and SEP. The $R^2$ value for moisture, CP, CA, CF, Ash, ADF, NDF in calibration set was 0.86, 0.94, 0.91, 0.88, 0.48 and 0.93, respectively. The value in validation set was 0.66, 0.86, 0.83, 0.71, 0.35 and 0.88, respectively. The results of this experiment indicate that NIRS is a reliable analytical method to assess forage quality for CP, CF, NDF except ADF and moisture in permanent pastures when proper samples incorporated into the equation development.

STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY SECOND PREMOLARS RESTORED WITH DIFFERENT METHODS: THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS (상이한 방법으로 수복한 근관치료된 상악 제2소구치의 응력분포: 3차원 유한요소법적 분석)

  • Lim, Dong-Yeol;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.69-79
    • /
    • 2009
  • The purpose of this study was to evaluate the influence of elastic modulus of restorative materials and the number of interfaces of post and core systems on the stress distribution of three differently restored endodontically treated maxillary second premolars using 3D FE analysis. Model 1, 2 was restored with a stainless steel or glass fiber post and direct composite resin. A PFG or a sintered alumina crown was considered. Model 3 was restored by EndoCrown. An oblique 500 N was applied on the buccal (Load A) and palatal (Load B) cusp. The von Mises stresses in the coronal and root structure of each model were analyzed using ANSYS. The elastic modulus of the definitive restorations rather than the type of post and core system was the primary factor that influenced the stress distribution of endodontically treated maxillary premolars. The stress concentration at the coronal structure could be lowered through the use of definitive restoration of high elastic modulus. The stress concentration at the root structure could be lowered through the use of definitive restoration of low elastic modulus.