• Title/Summary/Keyword: fiber analysis

Search Result 3,988, Processing Time 0.031 seconds

Design of optimal fiber angles in the laminated composite fan blades (적층 복합재 팬-블레이드의 적층각도 최적화 설계)

  • Jeong, Jae-Yeon;Jo, Yeong-Su;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1765-1772
    • /
    • 1997
  • The layered composites have a character to change of structure stiffness with respect to the layup angles. The deformations in the fan-blades to be initially designed by considering efficiency and noise, etc., which arise due to the pressure during the fan operation, can make the fan inefficient. Thus, so as to minimize the deformations of the blades, it is needed to increase the stiffness of the blades. An investigation has been performed to develop the three dimensional layered composite shell element with the drilling degree of freedom and the optimization module for finding optimal layup angles with sensitivity analysis. And then they have been verified. In this study, the analysis model is engine cooling fan of automobile. In order to analyzes the stiffness of the composite fan blades, finite element analysis is performed. In addition, it is linked with optimal design process, and then the optimal angles that can maximize the stiffness of the blades are found. In the optimal design process, the deformations of the blades are considered as multiobjective functions, and this results minimum bending and twisting simultaneously.

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

A New Techno-Economic Modeling and Analysis for FTTH Optical Access Networks (광 가입자 망 진화를 위한 기술 경제성 평가)

  • Lee, Young-Ho;Hahm, Tae-Hoon;Kim, Young-Jin;Han, Jung-Hee
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.277-287
    • /
    • 2005
  • In this paper, we deal with a new techno-economic modeling and analysis for optical access networks. In deploying the fiber-to-the-home (FTTH) architecture, network planner needs to consider the following techno-economic issues: when do we need to upgrade existing local access network to FTTH network? how much do we invest to maximize profit? In order to answer these techno-economic questions, we need to consider the impact of emerging technologies and business environment. Toward this end, we develop a new techno-economic modeling to deal with the inherent complexity of technology evolution and cost economics. In particular, the new modeling approach provides us with an techno-economic analysis of technology alternatives such as ethernet passive optical network (E-PON) and wavelength division multiplex passive optical network (WDM-PON). In this analysis, we focus on the impact of critical factors such as the cost characteristic of proposed architecture and digital subscriber line (DSL) subscriber's churn-in to FTTH service and churn-out. We develop mixed integer-programming models for finding the evolution path of local access networks to broadband network architectures.

Structural and Thermal Sensitivity Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 구조적 및 열적 민감도 해석)

  • Kim, Seok-Il;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1634-1641
    • /
    • 2006
  • High-precision centerless grinding machines are emerging as a means of finishing the outer diameter grinding process required for ferrules, which are widely used as fiber optic connectors. In this study, a sensitivity analysis for structural and thermal characteristics was carried out using a virtual prototype of a centerless grinding machine to realize systematic design technology and performance improvements required to manufacture ferrules. The prototype consisted of a concrete-filled bed, hydrostatic grinding wheel (GW) and regulating wheel (RW) spindle systems, a hydrostatic RW table feed mechanism, a RW swivel mechanism, and on-machine GW and RW dressers. The results of the structural sensitivity analysis illustrated that the vertical stiffness of hydrostatic guideway for the RW table feed system greatly influenced the horizontal loop stiffness, and the results of the thermal sensitivity analysis illustrated that the heat generation rates at hydrostatic bearings and belt pulley greatly influenced the temperature rise of hydrostatic bearings and the deviation of thermal displacement between GW and RW.

Numerical Analysis of Heat Transfer and Fabrication of Carbon Material for Heat Dissipation in Solar Panel (태양광 패널 적용 방열용 탄소소재의 제조 및 열전달 수치해석)

  • Park, Hun-Su;Kang, Chul-Hee;Kim, Hong-Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.82-90
    • /
    • 2019
  • This analysis demonstrates the effective removal of heat generated from a solar panel's output degradation factor solar cells (the solar panel's output deterioration factor), and solves the problems of oxidation and corrosion in existing metal heat sinks. The heat-dissipating test specimen was prepared using carbon materials; then, its thermal conductivity and its effectiveness in reducing temperatures were studied using heat transfer numerical analysis. As a result, the test specimen of the 30g/㎡ basis weight containing 80% of carbon fiber impregnated with carbon ink showed the highest thermal conductivity 6.96 W/(m K). This is because the surface that directly contacted the solar panel had almost no pores, and the conduction of heat to the panels appeared to be active. In addition, a large surface area was exposed to the atmosphere, which is considered advantageous in heat dissipation. Finally, numerical analysis confirmed the temperature reduction effectiveness of 2.18℃ in a solar panel and 1.08℃ in a solar cell, depending on the application of heat dissipating materials.

Compression Molding Analysis of LFT-D System for Vehicle Trailing Arm (트레일링 암 생산용 LFT-D 시스템에서의 압축성형 해석)

  • Park, Bo-Gyu;Jung, Jin Woo;Jung, Han-Kyu;Park, Si-Woo;Ha, Dong Soo;Choi, Hyen Yel
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.133-138
    • /
    • 2017
  • Recently, CFRP composites are widely used as lightweight materials have with excellent mechanical properties and can beare widely used in various fields. In general, thermosetting resins are used for CFRP. However, in recent years, studies have been carried out using thermoplastic resins have been actively carried out to overcome the disadvantages of thermosetting resins. The LFT-D system is a molding method in which a fiber is directly cut to a the desired length while being impregnated with a thermoplastic resin to produce a compound and that is then press-molding molded to form the product. In this paper, before the production of the trailing arm, the compression molding analysis was carried out in order to grasp the problems that may occur during production. Through cCompression molding analysis was applied to calculate of the minimum press pressure and to compare and analysis analyze the molding conditions characteristic required to formfor forming the trailing arm.

A Development of Pivoting Composite Wing for Mounting Kit (키트용 접이식 복합재 날개 개발)

  • Joo, Young-Sik;Jun, Woo-Chul;Byun, Kwan-Hwa;Cho, Chang-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.486-492
    • /
    • 2013
  • The pivoting composite wing is developed for the kit to be mounted on the external stores. The wing has a pivoting structure for the installation to an aircraft and high aspect ratio to increase lift drag ratio. The wing needs to be light and have sufficient strength and stiffness to satisfy structural design requirements. The wing is designed with carbon fiber composite and the structural parts are integrated to reduce cost to manufacture. In order to verify the structural performances, the design load analysis and flight load survey, the static analysis and test, the ground vibration test and flutter analysis are performed. It is shown that the wing has sufficient structural strength and stiffness to satisfy the structural design requirements.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

Variation of reliability-based seismic analysis of an electrical cabinet in different NPP location for Korean Peninsula

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.926-939
    • /
    • 2022
  • The area of this study will cover the location-wise seismic response variation of an electrical cabinet in nuclear power point (NPP) based on classical reliability analysis. The location-based seismic ground motion (GM) selection is carried out with the help of probabilistic seismic hazard analysis using PSHRisktool, where the variation of reliability analysis can be understood from the relation between the reliability index and intensity measure. Two different approaches such as the first-order second moment method (FOSM) and Monte Carlo Simulation (MCS) are helped to evaluate and compare the reliability assessment of the cabinet. The cabinet is modeled with material uncertainty utilizing Steel01 as the material model and the fiber section modeling approach is considered to characterize the section's nonlinear reaction behavior. To verify the modal frequency, this study compares the FEM result with recorded data using Least-Squares Complex Exponential (LSCE) method from the impact hammer test. In spite of a few investigations, the main novelty of this study is to introduce the reader to check and compare the seismic reliability assessment variation in different seismic locations and for different earthquake levels. Alongside, the betterment can be found by comparing the result between two considered reliability estimation methods.