• Title/Summary/Keyword: fiber Bragg grating sensors

Search Result 196, Processing Time 0.021 seconds

Study on the Self Diagnosis of Reinforced Concrete Beam Retrofitted by Composite Materials with Optical Fiber Sensors (광섬유 센서를 이용한 복합재료로 보수보강된 철근콘크리트 보의 자기진단 기법개발)

  • 김기수;신영수;김종우;전재홍;조윤범
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.57-60
    • /
    • 2001
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type fibrous composite materials are widely used. Retrofitted concrete columns and beams gain the stiffness and strength, but they lose toughness and show brittle failure. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, We try to detect peel out effect and find the strain difference between main structure and retrofitting patch material when they separate each other.

  • PDF

Measurement of temperature change on coil column unit using FBG sensors during thermal response test: A study for geothermal energy system

  • Young-Sang Kim;Duc-Thang Hoang;Gyeong-O Kang;Ba Huu Dinh
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • The accurate measurement of temperature in the ground source heat pump system is crucial for assessing the thermal response of the system and validating the numerical model for parametric study, which is necessary for the thermal performance evaluation of the geothermal energy system. Conventional temperature sensors have some disadvantages such as they are difficult to install, and their position can be shifted during the backfill process of the ground heat exchanger. In this study, Fiber Bragg Grating (FBG) sensors were used to measure the temperature change of a recently developed ground heat exchanger (Coil Column Unit, CCU). FBG sensors were first calibrated in a thermal chamber alongside a correlation sensor (RTD sensor). The calibrated sensors were then mounted on the pipe surface at each spiral of the CCU to measure how temperature changes during the in-door mockup thermal response test. Finally, the measurement results of the FBG sensors were verified with a finite element coded program. The results indicated that the temperature difference between the numerical analysis and the experiment was less than 1%, which is significantly lower than that of the previous study using the RTD sensors. Therefore, it is feasible to apply FBG sensors for temperature measurement during the operation of the TRT of the geothermal energy system.

Operation load estimation of chain-like structures using fiber optic strain sensors

  • Derkevorkian, Armen;Pena, Francisco;Masri, Sami F.;Richards, W. Lance
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.385-396
    • /
    • 2017
  • The recent advancements in sensing technologies allow us to record measurements from target structures at multiple locations and with relatively high spatial resolution. Such measurements can be used to develop data-driven methodologies for condition assessment, control, and health monitoring of target structures. One of the state-of-the-art technologies, Fiber Optic Strain Sensors (FOSS), is developed at NASA Armstrong Flight Research Center, and is based on Fiber Bragg Grating (FBG) sensors. These strain sensors are accurate, lightweight, and can provide almost continuous strain-field measurements along the length of the fiber. The strain measurements can then be used for real-time shape-sensing and operational load-estimation of complex structural systems. While several works have demonstrated the successful implementation of FOSS on large-scale real-life aerospace structures (i.e., airplane wings), there is paucity of studies in the literature that have investigated the potential of extending the application of FOSS into civil structures (e.g., tall buildings, bridges, etc.). This work assesses the feasibility of using FOSS to predict operational loads (e.g., wind loads) on chain-like structures. A thorough investigation is performed using analytical, computational, and experimental models of a 4-story steel building test specimen, developed at the University of Southern California. This study provides guidelines on the implementation of the FOSS technology on building-like structures, addresses the associated technical challenges, and suggests potential modifications to a load-estimation algorithm, to achieve a robust methodology for predicting operational loads using strain-field measurements.

A Study on the Accelerometer for the Acceleration and Inclination Estimation of Structures using Double-FBG Optical Sensors (이중 FBG 광섬유센서를 이용한 구조물 가속도 및 기울기 측정 장치에 관한 연구)

  • Lee, Geum-Suk;Ahn, Soo-Hong;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, an acceleration sensor that has optical fibers to measure the inclination and acceleration of a structure through contradictory changes in two-component FBG sensors was examined. The proposed method was to ensure precise measurement through the unification of the deformation rate sensor and the angular displacement sensor. A high sensitivity three-axis accelerometer was designed and prepared using this method. To verify the accuracy of the accelerometer, the change in wavelength according to temperature and tension was tested. Then, the change in wavelength of the prepared accelerometer according to the sensor angle, and that of the sensor according to the change in ambient temperature were measured. According to the test results on the FBG-based vibration sensor that was developed using a high-speed vibrator, the range in measurement was 0.7 g or more, wavelength sensitivity, 2150 pm/g or more, and the change in wavelength change, $9.5pm/^{\circ}C$.

A REAL-TIME REMOTE SENSING AND DATA ACQUISITION SYSTEM FOR A NUCLEAR POWER PLANT

  • Kim, Ki-Ho;Hieu, Bui Van;Beak, Seung-Hyun;Choi, Seung-Hwan;Son, Tae-Ha;Kim, Jung-Kuk;Han, Seung-Chul;Jeong, Tai-Kyeong
    • Nuclear Engineering and Technology
    • /
    • v.43 no.2
    • /
    • pp.99-104
    • /
    • 2011
  • A Structure Health Monitoring (SHM) system needs a real-time remote data acquisition system to monitor the status of a structure from anywhere via Internet access. In this paper, we present a data acquisition system that monitors up to 40 Fiber Bragg Grating Sensors remotely in real-time. Using a TCP/IP protocol, users can access information gathered by the sensors from anywhere. An experiment in laboratory conditions has been done to prove the feasibility of our proposed system, which is built in special-purpose monitoring system.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Sweeping Automatic Linearization for Wavelength Swept Laser Used in Structure Safety Monitoring (구조물 안전 모니터링용 파장 스위핑 레이저를 위한 스위핑 자동 선형화)

  • Lee, Duk-Kyu;Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • In this study, a novel method for sweeping automatic linearization of wavelength swept laser is proposed. Through the test performed on the implemented laser, the linear sweeping is held up well with a 97% decrease in nonlinearity, and 60 nm sweeping range, 1 kHz sweeping frequency, and 8.8 mW average optical power were obtained. The proposed method uses fiber Bragg grating array, optical-electronic conversion circuit, FPGA embedded module, and a LabVIEW program to generate new compensated wave patterns which were applied to the fiber Fabry-Perot tunable filter. Linear sweeping can reduce the cumbersome and time-consuming recalibration process required for nonlinear sweeping. Additionally, the proposed method provides more accurate measurement results for the structure safety monitoring system.

A study on the low-frequency of acoustic sensor using single mode FBG (Fiber Bragg Grating). (단일모드 광섬유 브래그 격자를 이용한 저주파수 대역의 음향 센서에 관한 연구)

  • Kim, Kyung-Bok;Kwack, Kae-Dal
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.396-403
    • /
    • 2000
  • The low- frequency acoustic sensor using the recently developed FBG has an excellent merits which the existing fiber-optic sensor has and also it has an excellent signal sensing effect in the environment of low-frequency($30Hz{\sim}300Hz$). Furthermore, we can expect the utilization of low-frequency signal defection instead of existing microphones in the environment of electric noise and also it can be developed as the high-sensibility multiplexing through the sensor array system.

  • PDF

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

Papers : Simultaneous Monitoring of Strain and Temperature During and After Cure of Unsymmetric Cross - ply Composite Laminate Using Fiber Optic Sensors (논문 : 비대칭 직교적층 복합재료 적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 모니터링)

  • Gang,Hyeon-Gyu;Gang,Dong-Hun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, we present the simulation monitoring of strain and temperature during and after the cure of unsymmetric composite laminate using fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors are used to measure those measurands. The characteristic matrix of the sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilised as a lighr source. Two FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate in different directions and different locations. We perform a real time monitoring of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in a thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.