In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.
금속이 코팅된 FBG(fiber Bragg grating) 센서는 구조물이 과거에 겪은 최대 변형률을 기억하는 기억효과(memory effect)를 가진다. 본 연구에서는 무전해 도금법과 전해 도금법을 이용하여 약 $43{\mu}m$의 두께를 가지는 니켈(nickel)이 코팅된 FBG 센서를 제작하였다. 니켈 코팅된 FBG 센서의 잔류 변형률 생성 성능, 즉, 기억효과를 검증하기 위해 반복하중 실험(잔류 변형률 생성실험)을 수행하였다. 인가한 최대 변형률의 크기가 증가함에 따라 잔류 변형률이 증가함을 확인함으로써 기억효과를 검증하였다. 본 연구에서 수행한 니켈이 코팅된 FBG 센서의 제작 기법과 센서에 대한 반복하중 실험결과는 향후 광섬유 센서를 이용한 구조물 건전성 감시(SHM, structural health monitoring)기법 개발에 기본 데이터로서 활용될 것이다.
이 연구에서는 최근 사회기반시설물의 스마트 모니터링을 위하여 많은 관심을 받고 있는 광섬유 FBG형 가속도계와 MEMS형 가속도계의 적용성을 평가하고자 하였다. 이들의 성능을 비교하기 위하여 저주파수 영역에서 높은 민감도와 신뢰성을 가지고 있는 ICP형 가속도계를 스마트 센서와 동시에 모형구조물에 부착하여 소규모 진동대 실험을 수행하였으며, 계측된 응답을 이용하여 모드해석을 수행함으로써 간접적으로 계측자료의 신뢰성을 비교하였다. 계측자료로부터 구한 모드자료를 이용하여 진단빌딩의 층간 강성을 추정하였다. 추정된 강성의 신뢰성을 검증하기 위하여 기지의 질량을 추가하여 구조물의 특성을 변경시킨 후, 다시 진동대 실험을 수행하여 구한 실험모드해석 결과를 수치해석결과와 비교하였다.
복합재료는 비강성, 비강도가 높고 열팽창 계수가 낮으며 우수한 내열 특성 등 기계적, 열적 특성이 좋아 항공기, 인공위성을 비롯하여 여러 다른 구조물에 폭넓게 사용되고 있다. 하지만, 복합재료를 고온 환경에 사용하기 위해서는 고온 환경에서의 물성에 대한 검증이 필요하다. 본 연구에서는 FBG 센서가 삽입된 T700/Epoxy 복합재료 시편에 대해 온도에 따른 물성을 측정하였다 실험은 열챔버 내에서 수행하였고 온도 범위는 상온, $100^{\circ}$, $200^{\circ}$, $300^{\circ}$, $300^{\circ}$이다. 삽입된 광섬유의 예비 시험을 통해, 광섬유 센서의 삽입이 물성값에 미치는 영향을 확인하였다. 시험에는 [0/{0}/0]$_{T}$, [$90_2$/{0}/$90_2$] 와 같은 적층각을 갖는 두 종류의 시편을 사용하였다. 실험 결과로부터 온도에 따른 복합재료의 물성 변화를 성공적으로 측정하였으며 FBG 센서가 고온 환경의 변형률 측정 센서로 매우 적합함을 확인하였다.
한 개의 감지 광섬유 라인으로 분포 온도와 몇 개의 변형률을 측정할 수 있는 새로운 광섬유 센서 연구를 수행하였다. 분포 온도는 감지 광섬유의 라만 안티-스토크스 산란광을 시간영역 반사계(OTDR: optical time domain reflectometry)로 측정하고, 변형률은 광섬유 브래그 격자(FBG: fiber Bragg grating)를 사용하여 측정하였다. 분포 온도는 4 km의 단일 모드 광섬유의 감지 광섬유로부터 안티-스토크스 후방 산란광을 양방향에서 취득하고 새로이 고안된 수식으로 온도를 계산하였다. 온도 실험은 감지 광섬유의 중간쯤에서 약 50 m의 광섬유 부분의 온도를 $30^{\circ}C$부터 $70^{\circ}C$까지 $10^{\circ}C$ 간격으로 변화시키면서 실험한 결과 온도 측정 오차 범위는 $0.50^{\circ}C$이하로 확인되었다. 또한 감지 광섬유에 설치된 FBG는 변위 스테이지로 변형시키고 파장 변화를 광학 스펙트럼 분석기로 측정한 결과 각각 0.10 nm, 0.17 nm, 0.29 nm, and 0.00 nm를 얻었다. 이러한 파장 이동은 각각 $85.76{\mu}{\epsilon}$, $145.55{\mu}{\epsilon}$, $247.86{\mu}{\epsilon}$, $0.00{\mu}{\epsilon}$에 해당되었다.
본 논문은 광섬유 브래그 격자 센서를 이용한 대공간 구조물의 실시간 모니터링을 설명하였고, 외부 외력 작용시에 대공간 구조물의 요소인 막이나 케이블의 변형을 계측하는데 광섬유 브래그 격자 센서가 매우 적합하다는 점을 검증하고 있다. 이와 함께 대공간 구조물에 광섬유 브래그 격자 센서를 이용하여 변형을 모니터링하는 실험을 실시하였다. 장스팬의 대공간 구조물을 모니터링하기 위하여 많은 요소를 계측할 수 있는 장비가 필요하다. 실험의 결과로 광섬유 브래그 격자 센서는 외력 작용시에 정확한 계측을 보여주었다. 그러므로 대공간 구조물의 변형율을 계산할 수 있고 실시간 모니터링이 가능하다.
In this research, optical fiber sensors and shape memory alloys (SMA) were incorporated into sandwich panels for development of a smart honeycomb sandwich structure with damage detection and shape recovery functions. First, small-diameter fiber Bragg grating (FBG) sensors were embedded in the adhesive layer between a CFRP face-sheet and an aluminum honeycomb core. From the change in the reflection spectrum of the FBG sensors, the debonding between the face-sheet and the core and the deformation of the face-sheet due to impact loading could be well detected. Then, the authors developed the SMA honeycomb core and bonded CFRP face-sheets to the core. When an impact load was applied to the panel, the cell walls of the core were buckled and the face-sheet was bent. However, after the panel was heated over the reverse transformation finish temperature of the SMA, the core buckling disappeared and the deflection of the face-sheet was relieved. Hence the bending stiffness of the panel could be recovered.
Recently, it is required to develop a monitoring technology that combines an FBG sensor as a means for continuously monitoring whether reinforcing effect of FRP is maintained on FRP reinforced structural members. However, most existing researches focus on the insertion of FBG sensors into bar-shaped FRPs, and there is insufficient study on the details strip-type FRPs combined with FBG sensors. Therefore, in this paper, it is studied to develop a reinforcement in which a FBG sensor is combined with a FRP strip. Especially, combination of FRP and FBG sensor. For this, a series of experiments were performed to find the adhesive strength of fiber-FRP-epoxy joints, the tensile strength of FBG sensor part with reflection-lattice, and the performance depending on the connection method of FRF and FBG sensor. As a result of the study, it was found that a minimum strength of $216.15N/mm^2$ is required for incorporating FBG sensors in FRP using epoxy. It is considered that the adhesion length of epoxy joints should be more than 50mm. When the FBG sensor is attached to the FRP strip as an epoxy, it is considered appropriate to use the complete attachment and the sensor non-attachment method.
This study presents an experimental technique to monitor the dynamic behavior of the railway bridge system simultaneously using multiplexed fiber Bragg grating (FBG) sensors. The measuring quantities include stains, curvatures, vertical deflections, and vertical accelerations. The strains are directly measured from multiplexed FBG sensors at various locations of the test bridge followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the Bernoulli beam theory and regression analysis. Finally, vertical accelerations are obtained from the numerical differentiation in time domain. In order to verify the proposed method, several conventional electric strain gauges, displacement transducers, and accelerometers are installed at the mid-span of the bridge for comparisons. A test train is passed over the bridge to monitor the dynamic response of the bridge. The monitoring results show that the multiplexed FBG sensing system is able to capture the essential behavior of the test bridge while resolving wiring problem in practice.
A hybrid fiber-optic sensor system which combines fiber Bragg grating sensors and a Michelson interferometer has been constructed and evaluated for condition monitoring of large scale wind turbines. In order to measure multiple stresses applied to wind turbines such as strain, temperature and vibration, the system uses single broadband light source. It addresses both types of sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light, of which coherence length is about 3.28mm, for the Michelson interferometer demodulation. Experimental results demonstrated that the proposed fiber-optic sensor system was capable of measuring strain and temperature with measurement accuracy of 1pm. Also 500~2000Hz vibration signals were successfully analyzed by applying FFT signal processing to interference signals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.