• Title/Summary/Keyword: fiber Bragg grating sensors

Search Result 196, Processing Time 0.03 seconds

Application of Fiber Optic Sensors for Monitoring Deflection and Deformation of a Pipeline (배관 변형 및 처짐 감시를 위한 광섬유 센서의 활용)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.6
    • /
    • pp.460-465
    • /
    • 2016
  • Long pipe structures are usually installed in fixtures located with regular intervals or laid underground. Therefore, deflection and deformation could easily occur due to their weight or ground activity. A shape monitoring technique can be used effectively to evaluate the integrity of the pipe structures. Fiber Bragg grating (FBG) sensors, which have an advantage of multiplexing could be used to measure strains at multiple-points of a long structure. In this study, to evaluate the integrity of a pipeline, a shape estimation technique based on strain information was proposed. Furthermore, different experiments were conducted to verify the performance of the proposed technique. Thus, the proposed shape estimation technique can represent the shape according to the deformation of the specimen using the FBGs. Moreover, calculated deflection of the pipeline using the estimation technique showed a good agreement with the actual deflection of the pipeline.

A Transverse Load Sensor with Reconfigurable Measurement Accuracy Based on a Microwave Photonic Filter

  • Chen, Han;Li, Changqing;Min, Jing
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.519-524
    • /
    • 2018
  • We propose a transverse load sensor with reconfigurable measurement accuracy based on a microwave photonic filter in the $K_u$ band, incorporating a polarization-maintaining fiber Bragg grating. A prototype sensor with a reconfigurable measurement accuracy tuning range from 6.09 to 9.56 GHz/(N/mm), and corresponding minimal detectable load range from 0.0167 to 0.0263 N/mm, is experimentally demonstrated. The results illustrate that up to 40% manufacturing error in the grating length can be dynamically calibrated to the same corresponding measurement accuracy for the proposed transverse load sensor, by controlling the semiconductor optical amplifier's injection current in the range of 154 to 419 mA.

Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives (주기적인 반복 열하중이 패키징된 FBG 센서 신호 특성에 미치는 영향)

  • Kim, Heonyoung;Kang, Donghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.313-319
    • /
    • 2017
  • Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

Reliability Evaluation of Fiber Optic Sensors Exposed to Cyclic Thermal Load (주기적인 반복 열하중에 노출된 광섬유 센서의 신뢰성 평가)

  • Kim, Heon-Young;Kang, Donghoon;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.225-230
    • /
    • 2016
  • Fiber Bragg grating (FBG) sensors are currently the most prevalent sensors because of their unique advantages such as ease of multiplexing and capability of performing absolute measurements. They are applied to various structures for structural health monitoring (SHM). The signal characteristics of FBG sensors under thermal loading should be investigated to enhance the reliability of these sensors, because they are exposed to certain cyclic thermal loads due to temperature changes resulting from change of seasons, when they are applied to structures for SHM. In this study, tests on specimens are conducted in a thermal chamber with temperature changes from -$20^{\circ}C$ to $60^{\circ}C$ for 300 cycles. For the specimens, two types of base materials and adhesives that are normally used in the manufacture of packaged FBG sensors are selected. From the test results, it is confirmed that the FBG sensors undergo some degree of compressive strain under cyclic thermal load; this can lead to measurement errors. Hence, a pre-calibration is necessary before applying these sensors to structures for long-term SHM.

A Study on the Tank Liquid-Level Monitoring Sensor Systems for Large Scaled Vessels (대형선박의 액체 탱크용 수위 모니터링 센서 시스템 연구)

  • Sohn, Kyung-Rak;Kim, Jin-Wook;Cho, Seok-Je;Shim, Joon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.330-335
    • /
    • 2009
  • A fiber-optic liquid level sensor based on bending cantilever beam has been proposed. A fiber Bragg grating(FBG) embedded in the cantilever beam is used to sensing elements. The basic concept is elongation and constriction of the FBG corresponding to the liquid level variation. The best FBG position on the cantilever for obtaining the high sensitivity was 4 cm from the fixing point. When the liquid level moves up and down vertically, the Bragg wavelength is linearly shifted. But, the wavelength sensitivity of the FBG installed on the upper side of cantilever was four times better than that of the FBG equipped in the lateral side due to the difference of unit strain applied to the FBG. Intensity demodulation using the low-cost edge filter is used to interrogate the Bragg wavelength through converting the wavelength signals into the optical intensity ones. Experiment results show that the electrical output is exponentially proportional to the liquid level. But, it should be overcome for applying to the ships.

Measurement of Thermo-Optic Coefficient of a Liquid Using a Cascade of Two Different Fiber Bragg Gratings

  • Kim, Kwang Taek;Kim, In Soo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.95-99
    • /
    • 2013
  • We proposed and demonstrated a fiber optic sensor for detecting the thermo-optic coefficient of a liquid, based on a cascade of two different FBGs. One of the two FBGs was etched, and its cladding was removed, for evanescent wave coupling with an external liquid. The Bragg wavelength of the non-etched FBG was used as a reference for the temperature of the surrounding liquid. The refractive index (RI) and thermo-optic (T-O) coefficient of a liquid can be detected from the difference between the Bragg wavelengths of the two FBGs, and the variation of the difference in accordance with temperature.

Monitoring of Tunnel Structure using Fiber Bragg Grating Sensors (광섬유센서를 이용한 경부고속철도 터널의 시공중 계측)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.22 no.1
    • /
    • pp.32-38
    • /
    • 2009
  • Recently structural monitoring using fiber optic sensors became popular, but the fiber sensors are very difficult to apply to the real structure due to difficulty of handling. In this research, we developed the fiber sensor packages easy to attach or fasten to the structures like ordinary electric sensors. We apply the fiber sensors to the real tunnel structure for measuring the strains and shape changes. The applied fiber optics sensors show the behavior of tile tunnel structures. We summarize the data from tunnel for 2 year construction period and confirm the structural behavior of tunnel.

FBG sensor system for condition monitoring of wind turbine blades (풍력터빈 블레이드 상태 감시용 광섬유격자 센서시스템)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.75-82
    • /
    • 2013
  • We propose a fiber grating sensor system for condition monitoring of large scale wind turbine blades. For the feasibility test of the proposed sensor system, a down-scaled wind turbine has been constructed and experimented. Fiber grating sensors were attached on a blade surface for distributed strain and temperature measurements. An optical rotary joint was used to transmit optical signals between the FBG sensor array and the signal processing unit. Instead of broadband light source, we used a wavelength-swept fiber laser to obtain high output power density. A spectrometer demodulation is used to alleviate the nonlinear wavelength tuning problem of the laser source. With the proposed sensor system we could measure dynamic strain and temperature profiles at multi-positions of rotating wind turbine blades.

Technical Papers : Strain Monitoring of Filament Wound Composite Tank Using Fiber Bragg Grating Sensors (기술논문 : 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 탱크의 변형률 모니터링)

  • Gang, Hyeon-Gyu;Park, Jae-Seong;Gang, Dong-Hun;Kim, Cheol-Ung;Yun, Hyeok-Jin;Jo, In-Hyeon;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.130-138
    • /
    • 2002
  • 수압실험 동안 광섬유 브래그 격자(FBG) 센서를 이용하여 필라멘트 와인딩된 복합재료 탱크의 변형률을 모니터링하였다. 20개의 FBG 센서와 20개의 스트레인 게이지를 복합재료 탱크의 돔과 실린더 부분에 부착하였다. 광섬유 센서를 위한 고출력 광원으로는 파장 이동 광섬유 레이저(WSFL)을 이용하였다. 실험결과로부터, 많은 수의 센서를 필요로 하는 대형 구조물의 건전성 모니터링에 FBG 센서 시스템이 유용함을 확인할 수 있었다.

Study on the Fiber Bragg Grating Sensors for Smart Structures and Their Applications (스마트 구조물용 광섬유 격자센서 및 그 응용)

  • Kim Ki-Soo;Song Young-Chul;Pang Gi-Sung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.115-118
    • /
    • 2004
  • In this paper, a Fiber Bragg Grating (FBG) sensor system for smart structures is described. FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system, a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We applied the FBG system to composite repairing structures and beam column joint of building structure. We also applied the system to nuclear energy power plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain, temperature and vibration detectors as parts of smart structures.

  • PDF