• Title/Summary/Keyword: ferroelectric devices

Search Result 121, Processing Time 0.024 seconds

Experimental study on the Organic Ferroelectric Thin Film on Paper Substrate (유기 강유전 박막의 종이기판 응용가능성 검토)

  • Park, Byung-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2131-2134
    • /
    • 2015
  • In this study, It has been demonstrated a new and realizable possibility of the ferroelectric random access memory devices by all solution processing method with paper substrates. Organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) thin films were formed on paper substrate with Al electrode for the bottom gate structure using spin-coating technique. Then, they were subjected to annealing process for crystallization. The fabricated PVDF-TrFE thin films were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found from polarization versus electric field (P-E) measurement that a PVDF-TrFE thin film on paper substrate showed very good ferroelectric property. This result agree well with that of a PVDF-TrFE thin film fabricated on the rigid Si substrate. It anticipated that these results will lead to the emergence of printable electron devices on paper. Furthermore, it could be fabricated by a solution processing method for ferroelectric random access memory device, which is reliable and very inexpensive, has a high density, and can be also fabricated easily.

Effect of Microstructure on Piezoelectric Properties and TCC Behavior in PZT-PZN Ceramics (PZT-PZN 세라믹의 미세구조가 압전 특성 및 TCC 거동에 미치는 영향)

  • Seo, Intae;Choi, Yongsu;Cho, Yuri;Kang, Hyung-Won;Kim, Kang San;Cheon, Chae Il;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.445-451
    • /
    • 2022
  • Ultrasonic sensor is suitable as a next-generation autonomous driving assist device because its lower price compared to that of other sensors and its sensing stability in the external environment. Although Pb(Zr, Ti)O3 (PZT)-relaxor ferroelectric system has excellent piezoelectric properties, the change in capacitance is large in the daily operating temperature range due to the low phase transition temperature. Recently, many studies have been conducted to improve the temperature stability of ferroelectric ceramics by controlling the grain size and crystal structure, so it is necessary to study the effect of the grain size on the piezoelectric properties and the temperature stability of PZT-relaxor ferroelectric system. In this study, the piezoelectric properties, phase transition temperature, and temperature coefficient of capacitance (TCC) of 0.9 Pb(Zr1-xTix)O3-0.1 Pb(Zn1/3Nb2/3)O3 (PZTx-PZN) ceramics with various grain sizes were investigated. PZTx-PZN ceramics with larger grain size showed higher piezoelectric properties and temperature stability, and are expected to be suitable for ultrasonic devices in the future.

Switching Dynamics Analysis by Various Models of Hf0.5Zr0.5O2 Ferroelectric Thin Films (Hf0.5Zr0.5O2 강유전체 박막의 다양한 분극 스위칭 모델에 의한 동역학 분석)

  • Ahn, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • Recent discoveries of ferroelectric properties in ultrathin doped hafnium oxide (HfO2) have led to the expectation that HfO2 could overcome the shortcomings of perovskite materials and be applied to electron devices such as Fe-Random access memory (RAM), ferroelectric tunnel junction (FTJ) and negative capacitance field effect transistor (NC-FET) device. As research on hafnium oxide ferroelectrics accelerates, several models to analyze the polarization switching characteristics of hafnium oxide ferroelectrics have been proposed from the domain or energy point of view. However, there is still a lack of in-depth consideration of models that can fully express the polarization switching properties of ferroelectrics. In this paper, a Zr-doped HfO2 thin film based metal-ferroelectric-metal (MFM) capacitor was implemented and the polarization switching dynamics, along with the ferroelectric characteristics, of the device were analyzed. In addition, a study was conducted to propose an applicable model of HfO2-based MFM capacitors by applying various ferroelectric switching characteristics models.

The Surface Image Properties of BST Thin Film by Depositing Conditions (코팅 조건에 따른 BST 박막의 표면 이미지 특성)

  • Hong, Kyung-Jin;Ki, Hyun-Cheol;Ooh, Soo-Hong;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.107-110
    • /
    • 2002
  • The optical memory devices of BST thin films to composite $(Ba_{0.7}\;Sr_{0.3})TiO_{3}$ using sol-gel method were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_{2}/Si$ substrate. The structural properties of optical memory devices to be ferroelectric was investigated by fractal analysis and 3-dimension image processing. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$ and $3800[\AA]$. BST thin films exhibited the most pronounced grain growth. The surface morphology image was roughness with coating numbers. The thin films increasing with coating numbers shows a more textured and complex configuration.

  • PDF

Fabrication and Characterization of MFIS-FET using Au/SBT/LZO/Si structure

  • Im, Jong-Hyun;Lee, Gwang-Geun;Kang, Hang-Sik;Jeon, Ho-Seung;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.174-174
    • /
    • 2008
  • Non-volatile memories using ferroelectric-gate field-effect transistors (Fe-FETs) with a metal/ferroelectric/semiconductor gate stack (MFS-FETs) make non-destructive read operation possible. In addition, they also have features such as high switching speed, non-volatility, radiation tolerance, and high density. However, the interface reaction between ferroelectric materials and Si substrates, i.e. generation of mobile ions and short retention, make it difficult to obtain a good ferroelectric/Si interface in an MFS-FET's gate. To overcome these difficulties, Fe-FETs with a metal/ferroelectric/insulator/semiconductor gate stack (MFIS-FETs) have been proposed, where insulator as a buffer layer is inserted between ferroelectric materials and Si substrates. We prepared $SrBi_2Ta_2O_9$ (SBT) film as a ferroelectric layer and $LaZrO_x$ (LZO) film as a buffer layer on p-type (100) silicon wafer for making the MFIS-FET devices. For definition of source and drain region, phosphosilicate glass (PSG) thin film was used as a doping source of phosphorus (P). Ultimately, the n-channel ferroelectric-gate FET using the SBT/LZO/Si Structure is fabricated. To examine the ferroelectric effect of the fabricated Fe-FETs, drain current ($I_d$) versus gate voltage ($V_g$) characteristics in logarithmic scale was measured. Also, drain current ($I_d$) versus drain voltage ($V_d$) characteristics of the fabricated SBT/LZO/Si MFIS-FETs was measured according to the gate voltage variation.

  • PDF

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • Kim, Do-Il;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

The Properties of BST Thin Films by Thickness (두께 변화에 따른 BST 박막의 특성)

  • Hong, Kyung-Jin;Min, Yong-Ki;Cho, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.455-458
    • /
    • 2001
  • The thin films of high pemitivity in ferroelectric materials using a capacitor are applied to DRAMs and FRAMs. (Ba, Sr)$TiO_3$ thin films as ferroelectric materials were prepared by the sol-gel method and made by spin-coating on the Pt/Ti/$SiO_2/Si$ substrate at 4,000 [rpm] for 10 seconds. The devices of BST thin films to composite $(Ba_{0.7},Sr_{0.3})TiO_3$ were fabricated by changing of the depositing layer number on $Pt/Ti/SiO_2/Si$ substrate. The thin film capacitor to be ferroelectric devices was investigated by structural and electrical properties. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was $2500[\AA]$, $3500[\AA]$, $3800[\AA]$. The dielectric factor of thin film when the coating numbers were 3, 4 and 5 times was 190, 400 and 460 on frequency l[MHz]. The dielectric loss of BST thin film was linearly increased by increasing of the specimen area.

  • PDF

The Properties of BST Thin Films by Thickness (두께 변화에 따른 BST 박막의 특성)

  • 홍경진;민용기;조재철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.455-458
    • /
    • 2001
  • The thin films of high permitivity in ferroelectric materials using a capacitor are applied to DRAMs and FRAMs. (Ba, Sr)TiO$_3$ thin films as ferroelectric materials were prepared by the sol-gel method and made by spin-coating on the Pt/Ti/SiO$_2$/Si substrate at 4,700 [rpm] for 10 seconds. The devices of BST thin films to composite (Ba$\_$0.7/Sr$\_$0.3/)TiO$_3$ were fabricated by changing of the depositing layer number on Pt/Ti/SiO$_2$/Si substrate. The thin film capacitor to be ferroelectric devices was investigated by structural and electrical properties. The thickness of BST thin films at each coating numbers 3, 4 and 5 times was 2500[${\AA}$], 3500[${\AA}$], 3800[${\AA}$]. The dielectric factor of thin film when the coating numbers were 3, 4 and 5 times was 190, 400 and 460 on frequency 1[MHz]. The dielectric loss of BST thin film was linearly increased by increasing of the specimen area.

  • PDF

Preparation and Interface Characteristics of $PbTiO_3$ Ferroelectric Thin Film (강유전성 $PbTiO_3$ 박막의 형성 및 계면특성)

  • Hur, Chang-Wu;Lee, Moon-Key;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.83-89
    • /
    • 1989
  • Ferroelectric $PbTiO_3$ thin film is deposited with rf sputtering at substrate temperature of $100-150^{\circ}C$. It is found that this has pyrochlore structure of amorphous type by X-ray diffractive analysis. Thermal annealing has excellent characteristics at $550^{\circ}C$ and laser annealing has best crystalline structure in case of scanning with 50 watts. Interface states in MFST and MFOST structure with a $PbTiO_3$ ferroelectric thin film gate have been investigated from analysis of C-V data. The interface states density has been drastically reduced by inserting an oxide layer between ferroelectric and semiconductor. The observed effect increase feasibility of employing ferroelectric thin films such as nonvolatile memory field effect transistor, IR optical FET, and Image Devices with a ferroelectric layer.

  • PDF