• Title/Summary/Keyword: ferrochrome slag

Search Result 3, Processing Time 0.016 seconds

Optimization of ferrochrome slag as coarse aggregate in concretes

  • Yaragal, Subhash C.;Kumar, B. Chethan;Mate, Krishna
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.421-431
    • /
    • 2019
  • The alarming rate of depletion of natural stone based coarse aggregates is a cause of great concern. The coarse aggregates occupy nearly 60-70% by volume of concrete being produced. Research efforts are on to look for alternatives to stone based coarse aggregates from sustainability point of view. Response surface methodology (RSM) is adopted to study and address the effect of ferrochrome slag (FCS) replacement to coarse aggregate replacement in the ordinary Portland cement (OPC) based concretes. RSM involves three different factors (ground granulated blast furnace slag (GGBS) as binder, flyash (FA) as binder, and FCS as coarse aggregate), with three different levels (GGBS (0, 15, and 30%), FA (0, 15, and 30%) and FCS (0, 50, and 100%)). Experiments were carried out to measure the responses like, workability, density, and compressive strength of FCS based concretes. In order to optimize FCS replacement in the OPC based concretes, three different traditional optimization techniques were used (grey relational analysis (GRA), technique for order of preference by similarity (TOPSIS), and desirability function approach (DFA)). Traditional optimization techniques were accompanied with principal component analysis (PCA) to calculate the weightage of responses measured to arrive at the final ranking of replacement levels of GGBS, FA, and FCS in OPC based concretes. Hybrid combination of PCA-TOPSIS technique is found to be significant when compared to other techniques used. 30% GGBS and 50% FCS replacement in OPC based concrete was arrived at, to be optimal.

Reduction Behavior of Self-Reducing Pellets of Chromite and Si Sludge with and without Carbon

  • Jung, Woo-Gwang;Hossain, Sakib Tanvir;Kim, Jong-Ho;Chang, Young-Chul
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.592-602
    • /
    • 2019
  • Feasibility is investigated for reduction of chromium ore by Si sludge with mixed silicothermic and carbothermic reaction. The reduction behavior of chromium ore using Si sludge is investigated precisely to determine the effects of carbon addition, reaction time, and reaction temperature. The pellets are dropped into the furnace after temperature stabilized. As the amount of C addition increases, the amounts of CO and $CO_2$ gas generation increase. After the dropping of the pellets, the pellets are heated and the reaction starts at about 1,573 K or higher. The pellets maintain their shape until 10 min after the drop, and then melted. As the holding time increased, the size of the reduced metal particles increased. The chromium ore is rapidly reduced by the Si sludge, and the slag penetrated into the chromium ore and reduction progressed inside. As the reduction temperature increased, the reaction initiation time is shortened and the reaction fraction of the reduction reaction increased. As the reaction temperature increased, agglomeration of reduced ferrochrome metal is promoted.

Effect of different binders on cold-bonded artificial lightweight aggregate properties

  • Vali, Kolimi Shaiksha;Murugan, S. Bala
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.183-193
    • /
    • 2020
  • The present investigation is to identify an optimum mix combination amongst 28 different types of artificial lightweight aggregates by pelletization method with aggregate properties. Artificial aggregates with different combinations were manufactured from fly ash, cement, hydrated lime, ground granulated blast furnace slag (GGBFS), silica fume, metakaolin, sodium bentonite and calcium bentonite, at a standard 17 minutes pelletization time, with 28% of water content on a weight basis. Further, the artificial aggregates were air-dried for 24 hours, followed by hardening through the cold-bonding (water curing) process for 28 days and then testing with different physical and mechanical properties. The results found the lowest impact strength value of 16.5% with a cement-hydrated lime (FCH) mix combination. Moreover, the lowest water absorption of 16.5% and highest individual pellet crushing strength of 36.7 MPa for 12 mm aggregate with a hydrated lime-GGBFS (FHG) mix combination. The results, attained from different binder materials, could be helpful for manufacturing high strength artificial aggregates.