• Title/Summary/Keyword: ferrite-pearlite structure

Search Result 70, Processing Time 0.025 seconds

Evaluation of Statistical distribution of extreme values of Graphite in Ductile Cast Iron by Image Analyzer (구상흑연주철재의 화상해석에 의한 흑연의 극치통계 평가)

  • Yoon, Myung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.71-77
    • /
    • 2010
  • Although the problems of defects and nonmetallic inclusion in metal fatigue are very complicated, it is particularly important to view these problems from the perspective that defects and inclusions are virtually equivalent to small cracks. This concept will help one to understand various fatigue phenomena caused by Ductile Cast Iron. For different ferrite-pearlite matrix structure, containing more than 90% spheroidal ratio of graphite, GCD 45-3, GCD 50, GCD 60 series and 70%, 80%, 90% spheroidal ratio of graphite, GCD 40, GCD 45-1, GCD 45-2 series, this paper has carried out image analyzer, estimated maximum and mean size of graphite, investigated correlation. It was concluded as follows. (1) A good quality of Ductile cast iron using in this experiment, the graphite was separated well. The effect of the interaction by graphite was verified by microscopic observation and by fracture mechanics investigation in surface, interior of the specimen. (2)${\sqrt{area}}_{max}$ of graphite can be used to predict fatigue limit of Ductile Cast Iron. The Statistical distribution of extreme values of ${\sqrt{area}}$ may be used as a guide line for the control of inclusion size in the steel making processes.

Neutron imaging for metallurgical characteristics of iron products manufactured with ancient Korean iron making techniques

  • Cho, Sungmo;Kim, Jongyul;Kim, TaeJoo;Sato, Hirotaka;Huh, Ilkwon;Cho, Namchul
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1619-1625
    • /
    • 2021
  • This paper demonstrates the possible nondestructive analysis of iron artifacts' metallurgical characteristics using neutron imaging. Ancient kingdoms of the Korean Peninsula used a direct smelting process for ore smelting and iron bloom production; however, the use of iron blooms was difficult because of their low strength and purity. For reinforcement, iron ingots were produced through refining and forge welding, which then underwent various processes to create different iron goods. To demonstrate the potential analysis using neutron imaging, while ensuring artifacts' safety, a sand iron ingot (SI-I) produced using ancient traditional iron making techniques and a sand iron knife (SI-K) made of SI-I were selected. SI-I was cut into 9 cm2, whereas the entirety of SI-K was preserved for analysis. SI-I was found to have an average grain size of 3 ㎛, with observed α-Fe (ferrite) and pearlite with a body-centered cubic (BCC) lattice structure. SI-K had a grain size of 1-3 ㎛, α-Ferrite on its backside, and martensite with a body-centered tetragonal (BCT) structure on its blade. Results show that the sample's metallurgical characteristics can be identified through neutron imaging only, without losing any part of the valuable artifacts, indicating applicability to cultural artifacts requiring complete preservation.

Effects of Alloying Elements and Heat Treatments on the Microstructures and Mechanical Properties of Ductile Cast Iron by Strip Casting (스트립캐스팅한 구상흑연주철박판의 합금원소 및 열처리에 따른 미세조직과 기계적 성질의 변화)

  • Lee, Gi-Rak;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.122-128
    • /
    • 2000
  • Strip casting process is a new technology that makes a near net shape thin strip directly from molten metal. With this process, a large amount of energy and casting cost could be decreased from the abbreviation of reheating and/or hot rolling process. Ductile cast iron which has spheroidal graphite in the matrix is the most commercial and industrial material, because of its supreme strength, toughness, and wear resistance etc. But it cannot be produced to the thin strip owing to difficulty in rolling of ductile cast iron. In this study, ductile cast iron strips are produced by the twin roll strip caster, with different chemical compositions of C, Si, and Mn contents. And then heat-treated, microstructures and mechanical properties are examined. The microstructures of as-cast strip are that of white cast iron which consists of the mixture of cementite and pearlite, but the equiaxed crystal zone of the pearlite or segregation zone of cementite exists in the center region of the strip thickness, which cannot be observed in the rapidly solidified metallic mold cast specimens. This structure is supposed to be formed from the thermal distribution of strip and the rolling force. Comparing with the structures of each strips after heat treatment, increasing Si content makes smaller spheroidal graphite and more compact in the matrix, furthermore the less of Mn content makes the ferrite matrix be obtained clearer and easier. As a result of the tensile test of graphitization heat-treated strips, the yield strengths are about 250 MPa, the tensile strengths are about $430{\sim}500$ MPa, and the elongations are about $10{\sim}13%$. In the case of the strip which has the smaller and more compact spheroidal graphite in the ferrite matrix, the higher tensile strength and better drawability could be obtained.

  • PDF

Effect of Weld Elastic Modulus on Simulation of Stress Concentration and Fatigue Life for Boiler Vessel (ADINA & WINLIFE 활용한 압력용기 용접부 피로파괴 해석)

  • Choe, Byung Hak;Lee, Bum Gyu;Shim, Jong Heon;Park, Chan Sung;Kim, Jin Pyo;Park, Nam Gyu
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.47-53
    • /
    • 2016
  • The aim of this study is to consider effect of weld elastic modulus on simulations of stress concentration and fatigue life for pressure vessel. The investigations include analysis with ADINA and WINLIFE softwares for whole body model about using condition of the boiler vessel. Values of weld elastic modulus were divided by 5 steps in butt weld area of the boiler vessel body. The stress concentration of the butt weld more was increased in case of higher elastic modulus of weld area because of higher difference of material properties between matrix and weld. It was concluded that the fatigue lives were decreased along increasing stress concentration due to high elastic modulus of weld. The matrix microstructure was estimated as pearlitic structure of ${\alpha}$ ferrite and pearlite. And the microstructures of welds along 5 steps of elastic modulus were estimated as bainitic fine pearlite and martensite as increasing elastic modulus.

A study on the Mechanical Characteristics by the Internal Quality of Connecting Rod Materials for Trucks (트럭용 커넥팅 로드 소재의 내부 품질에 따른 기계적 특성 연구)

  • 김동현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 1998
  • We have studied internal quality including chemical compositions, microscopic structure and nonmetallic inclusion of test materials. We have analyzed tensile strength value, hardness value, impact value etc. In analyzing internal quality, all of the test materials showed typical ferrite+pearlite structure. But nonmetallic inclusion showed oxide and sulfide inclusions in medium carbon steels, and sulfide inclusion is S-free cutting steels. In ca+ S-free cutting steels, the calcium aluminate and sulfide complex inclusion had low-melting points as deformation of sulfide and oxide inclusion is existed. It was found that tensile strength and hardness give maximum value in medium carbon steels, where as minimum in Ca + -free cutting steels. But values of elongation, reduction of area impact are reverse. Fracture surface of impact specimen is ductile in free cutting steels but brittle in medium cabon steels.

  • PDF

The Production Technology of High-Strength Round Bar by QST Rolling (QST압연법에 의한 고장력봉강 제조기술)

  • 신정호;한철호;이종수;장병록
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.240-243
    • /
    • 1997
  • The Quenching and Self Tempering (QST) rolling is treated in terms of an advance process on Controlled Rolling and Cooling Technology (CRCT). In the analysis, the effect of this process is governed by both quenching and finishing conditions in the related with temperature. The objective of the QST model is to simulate the temperature gradient of the stock being rolled in the rolling mill. A comparison of computer simulated and manufactured micro structure as well as mechanical properties shows a good consistency. The micro structure of this high-strength round bar consists of tempered martensite and ferrite + pearlite phases.

  • PDF

Turning and Metalic Characterization for CAM Shaft Materials of Diessel Engine (디젤 엔진용 캠축 소재의 금속적 특성 및 선삭 가공 특성에 관한 연구)

  • Chae, W.S.;Kim, K.W.;Kim, D.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper, We have studied internal quality incluiding chemical compositions, microscopic structure and nonmetalic inclusion of test material. We have analyzed dynamic characteristics of cutting resistence and compared chip treatment of the test material. In analyzing internal quality, all of the test material have typical ferrite+pearlite structure. But, nonmetallic inclusion has oxide and sulfide inclusion has oxide and sulfide inclusion in medium carbon steel, mainly sulfide inclusion is existed in S-free cutting steel. In Ca+S-free cutting steel, calcium aluminate and sulfide complex inclusion, had low-melting point, as deformation of sulfide and oxide inclusion is existed. Machining characteristics, cutting resistence is maximum in medium carbon steel. Chip treatement are excellent in S-free cutting steel, similar to the Ca+S free cutting steel and medium carbon steel.

  • PDF

Mechanical Properties of Ultrafine Grained Materials via Equal-Channel Angular Pressing (ECAP가공에 의한 초미세립 소재의 기계적 물성)

  • Ko, Y.G.;Kim, W.G.;Ahn, J.Y.;Park, K.T.;Lee, C.S.;Shin, D.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.105-111
    • /
    • 2006
  • A study was made to investigate the microstructure and the mechanical properties of low-carbon steel, Al-Mg alloy and Ti-6Al-4V alloy each representing bcc, fcc and hcp crystal structures, respectively fabricated by equal-channel angular(ECA) pressing. After a series of ECA pressings was performed, most grains were significantly refined below ${\mu}m$ in diameter with high mis-orientation of grain boundaries irrespective of different crystal structure used. Regarding the strain hardening capability, tensile tests of ultrafine grain (UFG) dual-phase (ferrite/martensite) steel which was different from UFG ferrite-pearlite steel were carried out at ambient temperature, and corresponding mechanical properties were discussed in relation to modified C-J analysis. Low-temperature and/or high strain-rate superplasticity of the UFG Al-Mg alloy and UFG Ti-6Al-4V alloy were also studied. Based on the analysis used in this study, it was concluded that UFG alloys exhibited the enhanced mechanical properties as compared to coarse-grained (CG) counterparts.

Manufacturing Technique and Conservation of Bigyeokjincheolloe Bomb Shells Excavated from the Ancient Local Government Office and Fortress of Mujang-hyeon, Gochang (고창 무장현 관아와 읍성 출토 비격진천뢰의 제작기법과 보존처리)

  • Kim, Haesol;Huh, Ilkwon
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.17-36
    • /
    • 2020
  • This paper describes the consevation treatment of eleven bigyeokjincheolloe bomb shells that were excavated from the Joseon-period local government office and fortress of Mujang-hyeon (present-day Mujang-myeon) in Gochang in 2018. It also provides information on the production method of the shells revealed through CT scanning, gamma-ray transmission imaging, and metallographic analysis. In preparation for the special exhibition "Bigyeokjincheolloe" at the Jinju National Museum in 2019 (July 16 to August 25), contaminants were removed from the shells and their surface was reinforced during the first phase of conservation treatment. Furthermore, the closures for the shells were identified for the first time. Regarding the production of the shells, the CT scanning and gamma-ray transmission imaging identified many blowholes in the interior of the body and the use of a chaplet on the side of one shell. The side of the body proved to be relatively thinner than the top and bottom. The traces of a hole for pouring molten metal into the center of the bottom indicates that molten metal was indeed emptied into the inverted body. In the metallographic analysis of two of the bodies and one lid, cementite and pearlite structures were identified on the body, indicating that it was made by casting. The presence of the ferrite structure with a partial distribution of the pearlite along with non-metallic inclusion in the lid suggested that the lid was made by forging.

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조요 내화강의 열화특성에 관한 연구)

  • 김현수;남기우;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.51-56
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in tensile test of high strength fire resistance steel for frame structure with time frequency analysis methods. The results obtained are summaries as follows ; In the T and TN specimen consisting of ferrite and pearlite grains, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$ - 10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point the second is after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min specimens, many signals were observed from area before yield point and counts were decreased after yield point.

  • PDF