• Title/Summary/Keyword: ferric ion

Search Result 146, Processing Time 0.022 seconds

Antioxidant Activities of Various Solvent Extracts from Ginseng (Panax ginseng C.A. Meyer) Leaves

  • Kang, Ok-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.321-327
    • /
    • 2011
  • Water, methanol and ethanol extracts of ginseng leaves were assayed for total phenolics and flavonoids, ascorbic acid, cupric and ferrous ion chelating activities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP) assay and ABTS radical cation decolourization (TEAC) assay for their antioxidant properties. The ethanol extract of ginseng leaves contained significantly (p<0.05) higher amounts of total phenolics and flavonoids (600.57 and 1701 mg/100 g) than methanol (374.43 and 1512.64 mg/100 g) and water extracts (248.30 and 680.05 mg/100 g). Among solvent extracts of ginseng leaves, the ethanol extract showed the most powerful antioxidant activities. However, the ferrous ion chelating activity of ginseng leaf extracts were lower than the cupric ion chelating ability. These differences in concentrations of key antioxidants among various solvent extracts seemed to be responsible for their differences in antioxidant activities. These results suggest that ethanol extract of ginseng leaves has the most effective antioxidant capacity compared to the methanol and water extracts tested in the present study. Thus, it can be applied for the effective extraction of functional material from ginseng leaves for the usage of pharmaceutical and/or food industries.

Purification and Characteristics of Fibrinolytic Enzyme from Chongkukjang

  • Yang, Jeong-Lye;Kim, Hee-Sook;Hong, Jeong-Hwa;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.2
    • /
    • pp.127-132
    • /
    • 2006
  • Bacillus sp. strain K-l, which produces a strong fibrinolytic enzyme, was isolated from chongkukjang, a traditional Korean fermented soybean paste. The fibrinolytic enzyme was purified from chongkukjang base by using ammonium sulfate fractionation and chromatographic techniques. Purified enzyme, CK K-1 was demonstrated to be homogeneous by SDS-PAGE and isoelectric focusing electrophoresis, and has molecular mass of a 12.4 kDa and a pI of 8.0. The optimal reaction pH value and temperature were 8.0 and $40^{\circ}C$, respectively. Phenyl-methyl-sulfonyl-fluoride (PMSF; serine protease inhibitor), ethylene-diamine-tetra-acetic acid (EDTA; metallo protease inhibitor), copper ion, ferric ion and lead ion inhibited the enzyme activity. These results indicated that the fibrinolytic enzyme is a metallo-serine protease and different from nattokinase and chongkukjangkinase.

A Basic Study on the Removal of Iron Ion in Waste Water by the Precipitation Method (침전법에 의한 폐수중의 철이온 제거에 관한 기초 연구)

  • 강동현;김형석;조동성
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.16-21
    • /
    • 1993
  • This study was carried out to investigate the settling characteristics of Fe(II) and Fe(III) hydroxide precipitates formed by pH adjustment of aqueous solution to remove ferrous and ferric ion in waste water. The results obstained in this study are as fellows : The settling rate was effectively increased with increasing the pH values of aqueous solution regulated by CaO and with increasing the amount of flocculant, on the other hand, application of excess flocculants decreased the settling rate. It is desirable that the concentration of iron ion is kept under $10^{-2}$ mol/ㅣ because the settling rate was decreased with increasing the concentration of iron hydroxide precipitates.

  • PDF

Total Flavonoid Content and Antioxidant Activities of Turmeric (Curcuma longa L.) Extracts in Jindo Korea (진도산 울금(Curcuma longa L.) 추출물의 총 플라보노이드 함량 및 항산화 활성)

  • Oh, Da-Young;Kim, Han-Soo
    • Journal of Environmental Science International
    • /
    • v.28 no.4
    • /
    • pp.393-401
    • /
    • 2019
  • The present study were conducted to determine physiological activities and antioxidant effects [2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity, reducing power, Ferric Reducing Antioxidant Power (FRAP) and Fe2+ (ferrous ion) chelating capacity] of 70% methanol, chloroform:methanol, 2:1 volume ratio (CM) and ethyl acetate extract of turmeric (Curcuma longa L.). Bioactive compound of tannin $0.125{\pm}0.007mg$ Catechin Equivalent (CE)/g dry weight. Turmeric extracts yield were 70% methanol 16.54%, CM 5.64% and ethyl acetate 4.14%, respectively. Antioxidant activity of the samples exhibited a dose-dependent increase. Results showed that extraction solvent had significant effects on total flavonoid content and antioxidant effects of ethyl acetate. But ferrous ion-chelating capacity of 70% methanol extract was higher than CM and ethyl acetate extract. From the results of this study, turmeric can be utilized as a valuable and potential nutraceutical for the functional food industry.

A Kinetic Study of the Fe(Ⅲ)-Catalyzed Aquation of Bis(malonato)Diaquochromate(Ⅲ) Ion

  • Shim, Jeong-Ae;Moon, Jung-Dae;Park, Heung-Jae;Choi, Sung-Nak
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.4
    • /
    • pp.318-323
    • /
    • 1990
  • The bis(malonato)diaquochromate(III) ion, $Cr(C_3H_2O_4)_2^-$ in acidic solution hydrolyzes to give $Cr(C_3H_2O_4)^{+}.$ This reaction is catalyzed by ferric ion and the rate law for this cation catalyzed-aquation in a $HClO_4/NaClO_4$ medium, $I = 1.00 M, is-d[Cr(C_3H_2O_4)_2^-]/dt = ({\kappa}_1[Fe^{3+}] + {\kappa}_2[H^+])[Cr(C_3H_2O_4)_2^-]$ where ${\kappa}_1(25^{\circ}C) = 4.72×10^{-5} M^{-1}sec^{-1} ({\Delta}H^{\neq} = 22.5 Kcal/mol, {\Delta}S^{\neq} = - 2.58 eu) and {\kappa}_2(25^{\circ}C) = 4.75{\times}10^{-5} M^{-1}sec^{-1} ({\Delta}H^{\neq} = 21.2 Kcal/mol, {\Delta}S^{\neq} = - 7.13 eu).$ Rapid preequilibrium association of basic Cr-bound oxygen with $Fe^{3+},$ followed by rate-determining ring opening, is proposed to account for the ${\kappa}_1,$ hydrolysis pathway.

Effects of CellCaSi and Inorganic Additives on Phosphorus Removal in Water (규산질다공체와 무기첨가물의 수중 인 제거 효과)

  • Park, Myung-Hwan;Han, Myung-Soo;Lee, Seog-June;Ahn, Chi-Yong;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.213-219
    • /
    • 2002
  • The CellCaSi, a porous silicate material, was tested for the removal of phosphorus (P as phosphate) in water. The effect of the CellCaSi was investigated on the basis of both particle size (under 1,2, and 4 mm) and added amount (0, 1, 2.5, 5, and 10 g/1) of the CellCaSi. The removal efficiency of phosphorus was highest with a particle size of under 1 mm and also increased with an increasing amount of the CellCaSi. The pH change showed little effect on the phosphorus removal of the CellCaSi. The calcium ion was eluted from the CellCaSi into the water, while the aluminium and iron were not. The eluted calcium ion was combined with dissolved phosphorus and then precipitated. The highest removal efficiency of phosphorus was obtained by the combined addition of the CellCaSi, calcium chloride, and ferric chloride. That is, the phosphorus concentrations of 0.10 and 1.0 mg/1 decreased to 0.03 and 0.47 mg/l by the addition of the CellCaSi (1 g/l), calcium ion (30 mg/l), and ferric ion (1 mg/l) at day 8 after treatment. The water qualities at the end of the experiment were as follows: pH was 8.1 and conductivity was 318 ${\mu}$S/cm (a registered maximum conductivity of 500${\mu}$S/cm for raw and potable wafers).

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

Development of the Purification Method of Ovotransferrin in Egg White (난백 내 Ovotransferrin의 분리방법에 관한 연구)

  • Jang, A.;Jo, Y.J.;Lee, M.;Kim, J.C.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1025-1032
    • /
    • 2005
  • This study was carried out to separate ovotransferrin in chicken egg white by gel chromatography and heparin affinity chromatography. In gel filtration which was performed with 50mM Phosphate buffer (pH 7.2, 0.15M salt) at a flow rate of 2.0 ml/min, ovotransferrin and ovalbumin were eluted together in fraction number 11-16. In order to separate pure ovotransferrin, fraction No. 12-14 of them which have high concentration of ovotransferrin were concentrated and rechromatographed. However, the ovotransferrin did not separated clearly. In heparin affinity chromatography, the separation was performed with 50mM ethylaminetetraacetic acid (EDTA, pH7.2) and 50mM Phosphate buffer (pH 7.2, 0.15M salt contained) on ferrous and ferric ion saturated column at as same flow rate as gel filtration system's. Ovotransferrin and albumin were eluted together at 10-15min (fraction No.3) and 15-20min (fraction No.4), respectively. However, purified ovotransferrin was eluted at 156-165min and 165-175min (tube No.32-33) with 50 mM phosphate buffer (pH 7.2, 0.15M salt free), respectively. Heparin affinity chromatography with ferric ion saturated column was resulted in the best separation of ovotransferrin rather than separation by gel chromatography and ferrous ion saturated heparin affinity chromatography.

Influence of Acetate on the Removal of Phenanthrene from Contaminated Soil using Fenton Reaction (Fenton Reaction을 이용한 Phenanthrene 오염 토양 처리에서 Acetate의 영향)

  • Seong, Jo-Seph;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.352-357
    • /
    • 2009
  • Due to rapid consumption of hydrogen peroxide, large amount of hydrogen peroxide is required when Fenton reaction is applied to the contaminated soil. In this study, acetate was employed as a ligand of $Fe^{2+}$ to enhance the efficiency of removal of phenanthrene by securing the stability of hydrogen peroxide. 0.5 ${\sim}$ 3 times of acetate (2${\sim}$12mM) was added to compare with molar concentration of $Fe^{2+}$. Low initial concentration of hydrogen peroxide was 0.7% to eliminate side effect of removal efficiency. The results showed that hydrogen peroxide lifetime was lasted up to 72 hours, or more than 50 times of normal lifetime. Phenanthrene removal efficiency was improved up to 70% due to stabilized hydrogen peroxide. Ferrous ion was oxidized to ferric ion and oxidation-reduction was repeated during the reaction. Finally ferric ion was reduced to ferrous by $HO_2$. It was confirmed that, due to the influence of hydrogen peroxide, pH was acid region and it remained at the range of 4 ${\sim}$ 5 when 8 mM or more of acetate was added. Acetate which was used as the ligand of Fe was also decomposed by Fenton reaction. The decomposition time of acetate was slower than phenanthrene. Therefore, it was able to come to the conclusion that phenanthrene was superior to acetate at the competition for decomposition. Through the results of this study, it was able to identify the possibilities to improve the efficiency of Fenton reaction in the contaminated soil and its economic feasibility, and to move to more realistic technique through research expanded to neutral pH region.

Production of High purity $Mn_3O_4$Powder by Precipitation of Calcium fluoride in the Manganese Leaching Solution (망간침출액에서 불화칼슘화에 의한 高純度 망간酸化物의 製造)

  • 한기천;이계승;최재석;신강호;조동성
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.3-8
    • /
    • 2002
  • In order to make the high purity Mn$_3$O$_4$powder for the raw material of soft ferrite, Mn is extracted from the dust and the extracted solution is refined. The dust is generated in producing a medium-low carbon ferromanganese and contains 90% Mn$_3$O$_4$. Mn$_3$O$_4$in the dust was reduced into MnO by roasting with charcoal. Injection of the 180g/L of the reduced dust into 4N HCI solution increased pH of the leaching solution higher than 5 and then a ferric hydroxide was precipitated. Because the ferric hydroxide co-precipitates with Si ion etc, Fe and Si ion was removed from the solution and the about 10% Mn solution was obtained. The solution was diluted with water to Mn-15000 ppm and $NH_4$F was injected into the diluted solution at $70^{\circ}C$ to the F-3000 ppm. As a result, Ca ion is precipitated as $CaF_2$and the residual concentration of Ca was 14 ppm. Injection of the equivalent (NH$1.5M_4$)$_2$$CO_3$solution as 2 L/min at $25^{\circ}C$ into the above solution precipitated a fine and high purity $MnCO_3$powder. The deposition was filtrated and roasted at $1000^{\circ}C$ for 2 hours. As a result, $MnCO_3$powder is converted into $Mn_3$$O_4$powder and it had $8.2\mu$m of median size. The final production is above 99% $Mn_3$$O_4$powder and it satisfied the requirement of high purity $Mn_3$$O_4$powder for a raw material of soft ferrite.