• Title/Summary/Keyword: fermentor

Search Result 279, Processing Time 0.022 seconds

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

Isolation and Identification of an Anaerobic Dissimilatory Fe(III)-Reducing Bacterium, Shewanella putrefaciens IR-1

  • Hyun, Moon-Sik;Kim, Byung-Hong;Chang, In-Seop;Park, Hyung-Soo;Kim, Hyung-Joo;Kim, Gwang-Tae;Kim, Mi-a;Park, Doo-Hyun
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.206-212
    • /
    • 1999
  • In order to isolate a Fe(III)-reducer from the natural environment, soil samples were collected from various patty fields and enriched with ferric citrate as a source of Fe(III) under anaerobic condition. Since the enrichment culture was serially performed, the Fe(III)-reduction activity was serially diluted and cultivated on an agar plate containing lactate and ferric citrate in an anaerobic glove box. A Gram negative, motile, rod-shaped and facultative anaerobic Fe(III)-reducer was isolated based on its highest Fe(III)-reduction activity, Bacterial growth was coupled with oxidation of lactate to Fe(III)-reduction, but the isolate fermented pyruvate without Fe(III), The isolate reduced an insoluble ferric iron (FeOOH) as well as a soluble ferric iron (ferric citrate). Using the BBL crystal enteric/non-fermentor identification kit and 16S rDNA sequence analysis, the isolate was identified as Shewanella putrefaciens IR-1.

  • PDF

Submerged Culture of Phellinus linteus for Mass Production of Polysaccharides

  • Lee, June-Woo;Baek, Seong-Jin;Kim, Yong-Seok
    • Mycobiology
    • /
    • v.36 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • In order to increase the mycelial production of Phellinus linteus, which exhibits potent anticancer activity, some ingredients of the medium used to culture P. linteus were investigated. The optimal medium composition for the production of Phellinus linteus was determined to be as follows: fructose, 40 g/l; yeast extract, 20 g/l; $K_2HPO_4$, 0.46 g/l; $K_2HPO_4$, 1.00 g/l; M$MgSO_4\cdot7H_2SO$, 0.50 g/l; $FeCl_2\cdot6_2O$, 0.01 g/l; $MnCl_2\cdot4H_2O$, 0.036 g/l; $ZnCl_2$, 0.03 g/l; and $SuSO_4\cdot7H_2O$, 0.005 g/l. The optimal culture conditions were determined to be as follows: temperature, 28$^{\circ}C$; initial pH, 5.5; aeration, 0.6 vvm; and agitation, 100 rpm, respectively. Under optimal composition and conditions, the maximum mycelial biomass achieved in a 5 l jar fermentor was 29.9 g/l.

Production of 3-Ketosteroid-delta-1-Dehydrogenase by a Two-stage Continuous Culture

  • Ryu, D.Y.;Lee, B.K.;Thoma, R.W.
    • Microbiology and Biotechnology Letters
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1974
  • We have studied the applicability of the principles and inherent advantages of the two-stage dontinuous uclture technique to an enzyme process for the purpose of improving and optimizing the productivity of 3-ketosteroid-delta-1-dehydrogenase. By using a two-stage continuous culture system, the growth st ageand enzyme produdtion stage are separated. In each stage an optimal set of toperaing conditions was determined, and this was tested for feasibility for the period of 10 days. During this period, at least 70% of the maximum enzyme productivity could be maintained. The important design parameters studied are: (1) optimal specific growth rate in the first stage which corresponds to the maximal cell productivity, (2) the optimal dilution rate in the second stage which in turn determines the size of second stage fermentor and the mean residence time of cells in the second stage, (3) cell concentration in both stages, add (4) the specific enzyme productivity and enzyme productivity of the second stage. In addition, by using two-stage continuous culture system we have been able to reduce or eliminate the effect of catabolite repression due to high medium concentration and the adverse effect of the solvent used to dissolve the inducer. We have found the balance between the opposing effects of induction and repression in the second stage judging from the observation that the enzyme productivity goes through a maximum.

  • PDF

Optimal Surface Aeration Rate for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum Using Pichia stipitis (Pichia stipitis를 이용한 모자반 가수분해물로부터의 bioethanol 생산 시 최적 surface aeration rate)

  • Lee, Sang-Eun;Kim, Hye-Ji;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.311-316
    • /
    • 2011
  • We investigated the optimal surface aeration rate during bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. It was observed that, when the working volume was 880 mL in 2.5-L lab-fermentor, the surface aeration rates of 30 to 100 mL/min were the optimal values for bioethanol production, in which this surface aeration rate corresponded to less than 0.05 (1/min) as the oxygen transfer rate coefficient ($k_La$). In addition, during repeated-batch operation was carried out, we examined whether those surface aeration rates were the optimal for bioethanol production. It was also observed that the surface aeration rates of 30 to 100 mL/min in the working volume of 880 mL were the optimal values in terms of the cumulative bioethanol producrion and bioethanol yield. On the basis of the oxygen transfer rate coefficient it is probable that those surface aeration rates will be applied to the large-scale bioethanol production from the hydrolysate of seaweed Sargassum sagamianum.

Characterization of the nar Promoter of Escherichia coli to use as an inducible promoter in Wild-type host Agrobacterium.tumefaciens

  • Lee, Gil-Ho;Jo, Mu-Hwan;Lee, Jong-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.758-761
    • /
    • 2001
  • In this study, the nar promoter of E. coli was characterized to see whether the nar promoter cloned onto pBBR122 can be used as an expression promoter of gram negative microbes. For this purpose, a plasmid with lacZ gene expressing ${\beta}-galactosidase$ instead of the structural genes of nar operon in a gram negative host strain(Agrobacterium.tumefaciens) was used to simplify an assay of induction of the nar promoter. The following effects were investigated to find optimal conditions: methods of inducing the nar promoter, optimal nitrate concentration, maximally inducing the nar promoter, the amount of expressed ${\beta}-galactosidase$ and induction ratio(specific ${\beta}-galactosidase$ activity after maximal induction/specific ${\beta}-galactosidase$ activity before induction). The following results were obtained from the experiments: the growth of Agrobacterium with E.coli nar promoter was not much affected by nitrate concentration in the shake-flask; induction of nar promoter was optimal when Agrobacterium was grown in the presence of 1% nitrate ion at the beginning of culture and when overnight culture was completely grown in the shake-flask before being transferred to other shake-flask; the amount of ${\beta}-galactosidase$ per cell and per medium volume was maximal when Agrobacterium was grown under aerobic condition to $OD_{600}$ of 1.7; then the nar promoter was induced under microaerobic and anaerobic condition made by lowering dissolved oxygen level(DO). After 2-3h of induction in the YEP medium selected as a main culture medium, the specific ${\beta}-galactosidase$ activity became about 17,000 Miller units in the fermentor cluture.

  • PDF

Effect of Oxygen Transfer Rate and Dissolved Oxygen on the Production of PHBV by Azoto-bacter vinelandii UWD. (산소전달 속도와 용존산소가 Azotobacter vinelandii UWD의 생분해성 고분자(PHBV) 생산에 미치는 영향)

  • 박창호
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.529-536
    • /
    • 1998
  • In a 20 L fermentor experiments the level of dissolved oxygen (D.O.) strongly affected growth and PHBV production of Azotobacter vinelandii UWD. A higher D.O. (5%) increased specific cell growth rate two folds but PHBV production was 17 folds higher (62.3 wt%) at a lower D.O.(1%) level. D.O. level was not a good criterion to evaluate the effect of aeration on fermentation characteristics of A. vinelandii UWD. This strain maintained an equal D.O. (5%) by decreasing its oxygen consumption rate when oxygen transfer rate (OTR) was decreased by changing agitation speed at a fixed aeration rate. OTR rather than D.O. was a criterion to explain the effect of aeration on the cell growth and PHBV production. At 5% D.O. with a lower 0TR cell growth rate decreased but PHBV production (57.3 wt%) approached to that (62.3 wt%) of the lower (1%) D.O.

  • PDF

Fed-Batch Culture for Polyhydroxyalkanoate Overproduction by Pseudomonas sp. HJ (Pseudomonas sp. HJ로부터 Polyhydroxyalkanoate 대량생산을 위한 유가식 배양)

  • 손홍주;이상준
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.201-210
    • /
    • 1996
  • The production of polyhydroxyalkanoate(PHA) from glucose by batch and fed-batch culture of Pseudomonas sp. HJ was studied. In batch culture using fermentor, 400 rpm of agitalion speed, 2 vvm of aeration rate, 18 hours of inoculum age, and 5% (vlv) of inoculum size were optimal. PHA production was not increased by deficiency of oxygen. In a batch culture, the final call mass was $6.251g/\ell$, and PHA content was 20% of dry cell weight. In a constant feeding fed-batch culture, cell mass increased to $33.24g/\ell$, and PHA content reached 48.9% of dry cell weight. In an intermittent feeding fed-batch culture, cell mass increased to $37.89g/\ell$, and PHA content reached 53.5% of dty cell weight.

  • PDF

Optimal Conditions for Chitinase Production by Serratia marcescens

  • Cha, Jin-Myeong;Cheong, Kyung-Hoon;Cha, Wol-Suk;Choi, Du-Bok;Roh, Sung-Hee;Kim, Sun-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.297-302
    • /
    • 2004
  • A chitinase-producing bacterium was isolated from seashore mud around Beobseongpo in Chunmam province through the use of a selective enrichment culture. The best chitinase producing strain was isolated and identified as Serratia marcescens KY from its characteristics. For effective production of chitinase, optimum pH, temperature, and agitation speed were investigated in flask cultures. The optimum pH using Serratia marcescens KY was between pH 6 and 7 and the chitinase produced was 37.9 unit/mL. On the other hand, the optimal pH of the Serratia marcescens ATCC 27117 was 7.5, and the produced amount of chitinase was 35.2 unit/mL. The optimal temperature for chitinase production for Serratia marcescens KY and Serratia marcescens ATCC 27117 was $30^{\circ}$. The cell growth pattern at different temperature was almost identical to the chitinase production. To investigate the optimal shaking speed under optimal culture, speeds were varied in the range of 0∼300 rpm. The maximum production of chitinase was carried at 200 rpm although the cell growth was the highest at 150 rpm. It indicates that oxygen adjustment is required for the maximum chitinase production. Using optimal conditions, batch cultures for comparing Serratia marcescens KY and Serratia marcescens ATCC 27117 were carried out in a 5 L fermentor. The oxygen consumption was increased with the increase of culture. Especially, at 120 h of culture Serratia marcescens KY and Serratia marcescens ATCC 27117 produced 38.3 unit/mL, and 33.5 unit/mL, respectively.

Rhamnolipid Production in Batch and Fed-batch Fermentation Using Pseudomonas aeruginosa BYK-2 KCTC 18012P

  • Lee, Kyung-Mi;Hwang, Sun-Hee;Ha, Soon-Duck;Jang, Jae-Hyuk;Lim, Dong-Jung;Kong, Jai-Yul
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • The optimization of culture conditions for the bacterium Pseudomonas aeruginosa BYK-2 KCTC 18012P, was performed to increase its rhamnolipid production. The optimum level for carbon, nitrogen sources, temperature and pH, for rhamnolipid production in a flask, were identified as 25 g/L fish oil, 0.01% (w/v) urea, 25 and pH 7.0, respectively. Optimum conditions for batch culture, using a 7-L jar fermentor, were 200 rpm of agitation speed and a 2.0 L/min aeration rate. Under the optimum conditions, on fish oil for 216 h, the final cell and rhamnolipid concentrations were 5.3 g/L and 17.0 g/L respectively. Fed-batch fermentation, with different feeding conditions, was carried out in order to increase, cell growth and rhamnolipid production by the Pseudomonas aeruginosa, BYK-2 KCTC 18012P. When 2.5 g of fish oil and 100 mL basal salts medium, containing 0.01 % (w/v) urea, were fed intermittently during the fermentation, the final cell and rhamnolipid concentrations at 264 h, were 6.1 and 22.7 g/L respectively. The fed-batch culture resulted in a 1.2-fold increase in the dry cell mass and a 1.3-fold increase in rhamnolipid production, compared to the production of the batch culture. The rhamnolipid production-substrate conversion factor (0.75 g/g) was higher than that of the batch culture (0.68 g/g).