• Title/Summary/Keyword: fermented product

Search Result 543, Processing Time 0.024 seconds

Hypolipidemic Properties of Fermented Capsicum and Its Product

  • Suh, Hyung-Joo;Chang, Un-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.245-249
    • /
    • 2002
  • This study was conducted to investigate the effects of fermented capsicum and a capsicum product on lipid metabolism. Fermented capsicum was prepared from red pepper puree tov three months. After 9() days of fermentation, capsaicin and dihydrocapsaicin concentrations were reduced from 24.7 and 14.7 g/mL to 15.5 and 6.45 g/mL, respectively. The capsicum product was prepared from the fermented capsicum mixed with prune extract, green tea extract, neroli extract and oligo-saccharide. Thirty-two male Sprague-Dawley rats were as- signed to four dietary groups (control, high-fat control (BE-control), high-fat-fermented capsicum (HF-S-1), high- fat-capsicum product (HF-S-2)). Plasma and hepatic lipid profiles were examined after three weeks of experimental diet. Food intakes were significantly lower in the HF-S-1 and HF-S-2 groups compared to the control group (p<0.05). The weight of perirenal fat pads was lowest in animals on the control diet (low-fat) and highest in high-fat control diet. The addition of fermented capsicum to high fat diets, HF-S-1 and HE-S-2 groups, resulted in significantly lower fat pad weights compared with the HF-control group. Both fermented capsicum (HF-S-1) and the capsicum product (HF-S-2) groups had lower plasma TG levels, atherogenic-index, and liver TG levels than the BE-control group (p <0.05). Liver TC levels were significantly lower in the HF-S-2 group than the HF-control group. The results demonstrate a hypolipidemic effect of fermented capsicum and the fermented cap-sicum product.

Change in Nitrogen Compounds of Fermented Fodder for Sea Cucumber during Three Step Fermentation on Sludge (고형오물을 이용한 해삼용 3단 발효사료 제조 중 질소 성분 변화)

  • Lee, Su-Jeong;Ko, Yu-Jin;Kim, Eun-Ja;Kang, Seok-Jung;Ryu, Chung-Ho
    • Journal of agriculture & life science
    • /
    • v.50 no.4
    • /
    • pp.147-155
    • /
    • 2016
  • This study presented a measure for turning by-products, released from land farming sites, into resources. The measure involved adding food by-products such as rice bran and nonfat soybean to the sludge, released from the eel farming sites, inoculating the lactic acid bacteria, Aspergillus oryzae, and Bacillus subtilis by step, fermenting them, and measuring the changed ingredients of the fermented fodder. The water content of the fermented fodder by the step of preparation was the first-step fermented product (14.6%) using the lactic acid bacteria, and the second and third-stage fermented product (33.0% and 34.0% respectively) using Aspergillus oryzae and Bacillus subtilis. The pH level was found to be 5.38 in the first-step fermented product due to the secretion of lactic acid caused by the lactic acid bacteria, and the pH level of the second and third-stage fermented products was 5.66 and 7.26, respectively, showing that the pH level increased. The phytic acid content was 0.126g/100g in the first-step fermented product, 0.004g/100g in the second-stage fermented product, and 0.093g/100g in the third-stage fermented product. The measurement of nitrogen content revealed that the amino nitrogen content was high with 1226.37mg% in the second-stage fermented product, and a little lower with 710.18mg% in the third-stage fermented product. The ammonium nitrogen content increased from 0.988mg/kg in the first-stage fermented product to 1.502mg/kg in the third-stage fermented product. Total nitrogen content increased to 2.78% in the first-stage fermented product, 4.08% in the second-stage fermented product, and 4.85% in the third-stage fermented product. As fermentation continued with the three microbes, the phytic acid decreased, and the protein decomposition rate increased. Also, due to the 3 step fermentation, the low-molecule nitrogen ingredient content increased, suggesting that the fodder was developed to offer high digestion and absorption.

Overview of Dairy-based Products with Probiotics: Fermented or Non-fermented Milk Drink

  • Hye Ji Jang;Na-Kyoung Lee;Hyun-Dong Paik
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.255-268
    • /
    • 2024
  • Probiotic products have long been recognized for their health benefits. Additionally, milk has held a longstanding reputation as a dairy product that offers high-quality proteins and essential micronutrients. As awareness of the impact of food on health grows, interest in functional products such as probiotic dairy products is on the rise. Fermentation, a time-honored technique used to enhance nutritional value and food preservation, has been used for centuries to increase nutritional value and is one of the oldest food processing methods. Historically, fermented dairy products have been used as convenient vehicle for the consumption of probiotics. However, addressing the potential drawbacks of fermentation has recently led to increase in research on probiotic dairy drinks prepared without fermentation. These non-fermented dairy drinks have the advantage of maintaining the original flavors of milk drinks, containing potential health functional probiotics, and being an alternative dairy product that is helpful for probiotics intake. Currently, research on plant-based dairy products is rapidly increasing in the market. These developments might suggest the potential for novel forms of non-fermented dairy beverages with substantial prospects in the food market. This review aims to provide an overview of milk-based dairy beverages, both fermented and non-fermented, and discuss the potential of non-fermented dairy products. This exploration paves the way for innovative approaches to deliver probiotics and nutrition to consumers.

Anti-Melanogenic Effect of Cannabis sativa Stem Extracts Fermented with Weissella paramesenteroides

  • Taehyun Kim;Jin-Woo Kim;Huitae Min;Jisu Park;Taejung Kim;Geun-Hyeong Kim;Byung-Joon Park;Jeong Kook Kim;Young-Tae Park;Jin-Chul Kim;Jungyeob Ham
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.250-256
    • /
    • 2023
  • Cannabis sativa (CS) has been in the spotlight not only for its medical uses but also as a raw material for cosmetics. As fermented cosmetics are known to have various health benefits, they have been extensively researched. Here, we investigated the characteristics of CS stems fermented using various gut microbes. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and melanin content analysis revealed that melan-a cells containing CS stems fermented with Weissella paramesenteroides (CSWP) showed considerably reduced melanin content. Additionally, CSWP downregulated the expression of several melanogenesis factors, tyrosinase-related protein-1, and tyrosinase-related protein-2. This study suggests that the anti-melanogenic effect of CSWP could provide a new basis for the development of skin-lightening agents.

Development and Verification of an Optimum Composition Model for a Synbiotic Fermented Milk Using Sequential Quadratic Programming Techniques

  • Chen, Ming-Ju;Chen, Kun-Nan;Lin, Chin-Wen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1490-1495
    • /
    • 2006
  • The purpose of this research was to develop an optimum composition model for a new synbiotic fermented dairy product with high probiotic cell counts, and to experimentally verify this model. The optimum composition model indicated the growth promoter ratio that could provide the highest growth rate for probiotics in this fermented product. Different levels of growth promoters were first blended with milk to improve the growth rates of probiotics, and the optimum composition model was determined. The probiotic viabilities and chemical properties were analyzed for the samples made using the optimal formula. The optimal combination of the growth promoters for the synbiotic fermented milk product was 1.12% peptides, 3% fructooligosaccharides (FOS), and 1.87% isomaltooligosaccharides (IMO). A product manufactured according to the formula of the optimum model was analyzed, showing that the model was effective in improving the viability of both Lactobacillus spp. and Bifidobacterium spp.

Effects of Dietary Fermented Seaweed and Seaweed Fusiforme on Growth Performance, Carcass Parameters and Immunoglobulin Concentration in Broiler Chicks

  • Choi, Y.J.;Lee, S.R.;Oh, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.862-870
    • /
    • 2014
  • This study was conducted to investigate the effects of brown seaweed (Undaria pinnatifida) by-product and seaweed fusiforme (Hizikia fusiformis) by-product supplementation on growth performance and blood profiles including serum immunoglobulin (Ig) in broilers. Fermentation of seaweeds was conducted by Bacillus subtilis and Aspergillus oryzae. In a 5-wk feeding trial, 750 one-d-old broiler chicks were divided into 5 groups, and were assigned to the control diet or experimental diets including control+0.5% brown seaweed (BS) by-product, control+0.5% seaweed fusiforme (SF) by-product, control+0.5% fermented brown seaweed (FBS) by-product, and control+0.5% fermented seaweed fusiforme (FSF) by-product. As a consequence, body weight gain (BWG) and gain:feed of seaweed by-product groups were clearly higher, when compared to those of control diet group from d 18 to 35 and the entire experimental period (p<0.05). In mortality rate, seaweed by-product groups were significantly lower when compared to control diet group during entire experimental period (p<0.05). However, Feed Intake of experimental diets group was not different from that of the control group during the entire experimental period. Whereas, Feed Intake of fermented seaweed by-product groups was lower than that of non-fermented seaweed groups (p<0.05). Total organ weights, lipids, and glutamic oxalacetic transaminase (GOT) of all treatment groups were not different from those of control group. However, glutamic pyruvate transaminase (GPT) of all treatment groups was higher than that of control group at d 17 (p<0.05). In case of serum Igs concentration, the concentration of IgA antibody in BS, SF, FSF treatment groups was significantly higher than in control group at d 35 (p<0.01). IgA concentration in FBS supplementation groups was negligibly decreased when compared to the control group. IgM concentration in the serums of all treatment groups was significantly higher than in control group (p<0.05) and in fermented seaweed by-product groups were much higher than in non-fermented seaweed groups (p<0.05). On the other hand, IgG concentrations in all treatment groups were lower than in control group (p<0.05). Taken together, our results suggest that by-product dietary supplementation of BS, SF, FBS, and FSF in poultry may provide positive effects of growth performance and immune response.

Technological Convergence and Knowledge Network in Rural Area: Fermented Soy Product Manufacturing Industry in Sunchang, Korea (농촌지역 산업 기술지식의 융합과 지식 네트워크: 순창군 장류산업을 중심으로)

  • Huh, Dongsuk;Park, Sohyun;Koo, Yangmi
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.566-582
    • /
    • 2016
  • This study aims to analyze knowledge extension and diffusion trend among industries through technological convergence in non-Capital rural areas. A case of Sunchang, Korea examines knowledge extension trend of fermented soy product manufacturing industry. Patent application data are used to make technology convergence analysis and knowledge network analysis. Patent analysis results show that there are differences of knowledge extension trend between the whole country and Sunchang. Technologies of fermented soy product manufacturing in Sunchang is inclined to extend toward technologies related to fermented microorganism. Contrary to the whole country, knowledge extension in rural area like Sunchang is converged to technologies suitable for specialized but limited regional assets and human resources. Core actors of knowledge network of fermented soy product manufacturing in Sunchang are mainly public organizations such as local government, universities, and agencies or institutes. Recently technology sharing and extension is likely to occur through the cooperation between associative corporations and public organizations.

  • PDF

Effects of oral administration with fermented product from sewage in land-based seawater fish farm on haematological factors of olive flounder, Paralichthys olivaceus (양식장 배출물 발효물의 어류 사료 첨가에 따른 넙치, Paralichthys olivaceus의 혈액학적 변동에 미치는 영향)

  • Gang, Ju-Chan;Ji, Jeong-Hun;Song, Seung-Yeop;Mun, Sang-Uk;Gang, Ji-Ung;Lee, Yeong-Don;Kim, Se-Jae
    • Journal of fish pathology
    • /
    • v.17 no.1
    • /
    • pp.57-66
    • /
    • 2004
  • Effects of oral administration with fermented product from sewage in land-based seawater fish farm on haematological disturbance in the olive flounder, Paralichthys olivaceus was investigated. After 4 weeks of conditioning with a basal diet, fish were divided into 4 groups and provided experimental diet (0.1, 0.5, 1.0 and 2.0%) supplement of fermented sewage for 80 days. Proximal analysis was performed for the product of sewage which was fermented by lactic acid and yeast. RBC count, hemoglobin concentration and hematocrit value were increased according to the treated periods, however, no statistical difference was observed between control and treatment groups. There were no significant difference in serum organic, inorganic compounds and enzyme activities between control and treatment groups. This study hypothesized that the supplement of fermented product from sewage in land-based seawater fish farm might be an additive supplement for source of fish diet in view of haematological examination. Recycling of the sewage may be an economic artificial sources of diet for fish aquaculture practices.

Current status of the Jangryu industry and future development direction (장류산업의 현황과 향후 발전 방안)

  • Na, Hye-Jin;Cho, Sung-Ho;Jeong, Do-Yeon
    • Food Science and Industry
    • /
    • v.53 no.2
    • /
    • pp.183-199
    • /
    • 2020
  • Traditional food is the basis of Korean food, but in the process of industrialization, Japanese soybean fermented product making method became standardization process of Korean soybean fermented product as a factory type. As a result, traditional fermented food was pushed behind the industrialization. At present, there is anxiety in the development of the fermented soybean product industry due to the gap in management level between the manufacturers, the decrease in consumption of Jangryu due to changes in dietary life, and the negative image as high salt food. In order to overcome these problems and lead continuous growth, governmental industrial development policies such as traditional liquor and Kimchi are inevitably needed. By laying the legal and institutional foundation and making good use of it in industry, it will be the foundation for continuous development in the market where fierce competition is accelerated.

Partial replacement of pork backfat with konjac gel in Northeastern Thai fermented sausage (Sai Krok E-san) to produce the healthier product

  • Sorapukdee, Supaluk;Jansa, Sujitta;Tangwatcharin, Pussadee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1763-1775
    • /
    • 2019
  • Objective: The influence of konjac gel level on fermentation process and product qualities were assessed to evaluate the feasibility of using it as fat analog in Northeastern Thai fermented sausage (Sai Krok E-san). Methods: Five treatments of fermented sausages were formulated by replacing pork backfat with 0%, 7.5%, 22.5%, and 30% konjac gel. The changes in lactic acid bacteria (LAB) and important physicochemical properties of samples were assessed during 3 days of fermentation. After the end of fermentation at day 3, water activity ($a_w$), instrumental texture, color, microbial counts, and sensory evaluation were compared. The best product formulation using konjac for replacing pork back fat were selected and used to compare proximate composition and energy value with control sample (30% pork backfat). Results: An increase in konjac gel resulted in higher values of LAB, total acidity, and proteolysis index with lower pH and lipid oxidation during 3 days of product fermentation (p<0.05). It was noted that larger weight loss and product shrinkage during fermentation was observed with higher levels of konjac gel (p<0.05). The resulting sausage at day 3 with 15% to 30% konjac gel exhibited higher hardness, cohesiveness, gumminess, springiness, and chewiness than control (p<0.05). The external color of samples with 22.5% to 30% konjac gel were redder than others (p<0.05). Mold, Salmonella spp., Staphylococcus aureus, and Escherichia coli in all finished products were lower than detectable levels. Product with 15% konjac gel had the highest scores of sourness linking and overall acceptability (p<0.05). Conclusion: The product with 15% of konjac gel was the optimum formulation for replacing pork backfat. It had higher sensorial scores of sourness and overall acceptability than control with less negative impact on external appearance (product shrinkage) and weight loss. Moreover, it provided 46% fat reduction and 32% energy reduction than control.