• Title/Summary/Keyword: fermented feed

Search Result 340, Processing Time 0.026 seconds

Effect and Nutrient Content of Fermented Aloe Saponaria as Pigs Feed Additive Food

  • Choi, Sun Mi;Supeno, Destiani;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Park, Jong Min;Kim, Jong Soon;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Aloe gel layer is well known as raw materials of medicines and cosmetics due to their antioxidant and anti-inflammatory properties. In aloe gel extracting process, the outer part of the leaf was removed. It contains high quality of fiber and many nutrients. However, this part is thrown away and generally used as fertilizer. The purpose of this research was to examine the important nutrient of Aloe saponaria. Moreover, the feasibility of using aloe as a dietary supplement by feeding fermentation treatment of aloe was investigated. To do this, the aloe leaf was divided into several parts including leaf skin, bottom of the leaf, tip of the leaf, middle of the leaf, and leaf flesh. Then the saponin content were analyzed from each part. The extraction method was used to clarify the saponin content. The aloe then fermented to improve it benefit. The fermented Aloe then given as dietary food to group of pig. Finally, the appropriate feed level was determined and the pork meat quality was analyzed. The extraction of saponin shows that the highest concentration of saponin located on the skin of the leaf. The feeding experiment shows that there is no significant difference in pig growth without aloe dietary food and groups with aloe as dietary food. It was conclude that fermented aloe can replace the pigs normal feeder as an alternative feeding solution.

Effects of Supplementing Microbially-fermented Spent Mushroom Substrates on Growth Performance and Carcass Characteristics of Hanwoo Steers (a Field Study)

  • Kim, Y.I.;Lee, Y.H.;Kim, K.H.;Oh, Y.K.;Moon, Y.H.;Kwak, Wan-Sup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1575-1581
    • /
    • 2012
  • This study evaluated the effect of dietary supplementation of microbially-fermented spent mushroom substrates (MFSMS) on weight gain, carcass characteristics, and economic efficiency of Hanwoo steers. Highly cellulolytic bacteria (Enterobacter spp. and Bacillus spp.) isolated from spent mushroom substrates (SMS) stacks were inoculated (1% v/v) into the SMS, which was anaerobically fermented and fed to the steers for 12.6 months during the growing and fattening periods. Growing Hanwoo steers were assigned to the control group without supplementation of Microbially-fermented SMS (MFSMS), to a treatment group with 50% of MFSMS (1/2 of the ad libitum group), and to a treatment group with ad libitum access to SMS (the ad libitum group). All the groups were fed the formulated feed and rice straw. The voluntary intake (DM basis) of MFSMS was 1.6 kg/d during the growing period and 1.4 kg/d during the fattening period. The voluntary rice straw intake decreased by 6 to 11%, but the total voluntary DMI increased by 7 to 15% with MFSMS fed. The increased DMI with MFSMS supplementation resulted in a tendency of increased (p = 0.055) live weight gain by 8 to 12% compared with the control group. At slaughtering, the supplementation of MFSMS increased (p<0.05) the ribeye area by an average of 10 cm2. In conclusion, feeding MFSMS improved growth performance and carcass traits of Hanwoo steers and could successfully replace a part of conventional roughage such as rice straw commonly used in Asian countries.

Effect of fermented biogas residue on growth performance, serum biochemical parameters, and meat quality in pigs

  • Xu, Xiang;Li, Lv-mu;Li, Bin;Guo, Wen-jie;Ding, Xiao-ling;Xu, Fa-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1464-1470
    • /
    • 2017
  • Objective: This study investigated the effect of fermented biogas residue (FBR) of wheat on the performance, serum biochemical parameters, and meat quality in pigs. Methods: We selected 128 pigs (the mean initial body weight was $40.24{\pm}3.08kg$) and randomly allocated them to 4 groups (1 control group and 3 treatment groups) with 4 replicates per group and 8 pigs per pen in a randomized complete block design based on initial body weight and sex. The control group received a corn-soybean meal-based diet, the treatment group fed diets containing 5%, 10%, and 15% FBR, respectively (abbreviated as FBR5, FBR10, and FBR15, respectively). Every group received equivalent-energy and nitrogen diets. The test lasted 60 days and was divided into early and late stages. Blood and carcass samples were obtained on 60 d. Meat quality was collected from two pigs per pen. Results: During the late stage, the average daily feed intake and average daily gain of the treatment groups was greater than that of the control group (p<0.05). During the entire experiment, the average daily gain of the treatment groups was higher than that of the control group (p<0.05). Fermented biomass residue did not significantly affect serum biochemical parameters or meat quality, but did affect amino acid profiles in pork. The contents of Asp, Arg, Tyr, Phe, Leu, Thr, Ser, Lys, Pro, Ala, essential amino acids, non-essential amino acids, and total amino acids in pork of FBR5 and FBR10 were greater than those of the control group (p<0.05). Conclusion: These combined results suggest that feeding FBR could increase the average daily gain and average daily feed intake in pigs and the content of several flavor-promoting amino acids.

Development of Korean Dairy Industry - Fermented milk products - (한국 유가공업의 발전과 전망 - 발효유)

  • Huh, Cheol-Seong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.149-153
    • /
    • 2005
  • Lactic acid bacteria had been widely utilized in fermented foods such as fermented dairy products, traditional sauces, kimchi, fermented sausages, medicines or probiotic feed additives for a long time. LAB are also widely distributed in the mammalian gastrointestinal tracts, oral cavity, vagina, and various foods or soils. The most familiar examples of using LAB would be the fermented milk products, and those had become one of the favorite foods in Korea f3r more than 34 years of history. The main benefits of the fermented milk products were originally the improvement of the balance of intestinal flora to control diarrhea and congestion disorders, and gradually, they were chosen by the consumer preference of the taste. The very beginning of the fermented milk products in Korea was the Yakult type products in 1971, and it was the commencement of the solid foundation of the dairy industry and the understanding beneficial effect of probiotic yogurt. After middle of 80's, stirred type fermented milk products had been firstly produced, and it was the time that the domestic dairy industry took root in Korea. From 90's, functional fermented milk products were produced, and drink type yogurt sales a mount increased drastically, and these products began to be chosen not only with the values of nutrition but also with physiological functions. The health claims are classified into intestinal health, gastric health and hepatic health. The prospects for the Korean market are as follows; The majority of leading products would be the premium functional yogurt products as it was last year. It is because the sales of lower cost products shows slow-down, and industries tend to increase the commercial advertisements of premium functional yogurt products through mass media. These tendencies would make the market situation become more competitive.

  • PDF

Effect of lactic acid bacteria and yeast supplementation on anti-nutritional factors and chemical composition of fermented total mixed ration containing cottonseed meal or rapeseed meal

  • Yusuf, Hassan Ali;Piao, Minyu;Ma, Tao;Huo, Ruiying;Tu, Yan
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.556-566
    • /
    • 2022
  • Objective: This study aimed to determine the appropriate supplementation level of lactic acid bacteria (LAB; Lactobacillus plantarum and Bacillus clausii), yeast (Saccharomyces cariocanus and Wickerhamomyces anomalus) for degrading free gossypol and glucosinolate in the fermented total mixed ration (TMR) containing cottonseed meal (CSM) or rapeseed meal (RSM), to improve the utilization efficiency of these protein sources. Methods: For LAB, L. plantarum or B. clausii was inoculated at 1.0×108, 1.0×109, 1.0×1010, and 1.0×1011 colony-forming unit (CFU)/kg dry matter (DM), respectively. For yeast, S. cariocanus or W. anomalus was inoculated at 5×106, 5×107, 5×108, and 5×109 CFU/kg DM, respectively. The TMR had 50% moisture and was incubated at 30℃ for 48 h. After fermentation, the chemical compositions, and the contents of free gossypol and glucosinolate were determined. Results: The results showed that the concentration of free gossypol content was reduced (p<0.05), while that of the crude protein content was increased (p<0.05) in the TMR containing CSM inoculated by B. clausii (1×109 CFU/kg DM) or S. cariocanus (5×109 CFU/kg DM). Similarly, the content of glucosinolate was lowered (p<0.05) and the crude protein content was increased (p<0.05) in TMR containing RSM inoculated with B. clausii (1×1010 CFU/kg DM) or S. cariocanus (5×109 CFU/g DM). Conclusion: This study confirmed that inclusion of B. clausii with 1.0×109 or 1.0×1010 CFU/kg DM, or S. cariocanus (5×109 CFU/kg DM) to TMR containing CSM/RSM improved the nutritional value and decreased the contents of anti-nutritional factors.

Effects of Feeding Solid-state Fermented Rapeseed Meal on Performance, Nutrient Digestibility, Intestinal Ecology and Intestinal Morphology of Broiler Chickens

  • Chiang, G.;Lu, W.Q.;Piao, X.S.;Hu, J.K.;Gong, L.M.;Thacker, P.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • This trial was conducted to determine the effects of feeding a diet containing solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. A mixed liquid culture, containing approximately 5 log cfu/ml Lactobacillus fermentum, Enterococcus faecium, Saccharomyces cerevisae and Bacillus subtilis was prepared in a 1:1:1:1 ratio. A basal substrate (BS) containing 75% rapeseed, 24% wheat bran and 1% brown sugar was mixed with the liquid culture in a ratio of 10:3. Over the 30-day fermentation, isothiocyanates were reduced from 119.6 to 14.7 mmol/kg. A total of 168, day-old male Arbor Acres broiler chicks were assigned to one of three dietary treatments including a corn-soybean meal based control diet as well as two experimental diets in which the control diet was supplemented with 10% of the BS containing unfermented rapeseed meal or 10% of the BS containing rapeseed meal subjected to solid state fermentation. There were 8 pens per treatment and 7 birds per pen. From days 19-21 and days 40-42, uncontaminated excreta were collected from each pen for digestibility determinations. In addition, digesta from the colon and ceca were collected to determine the number of lactobacilli, enterobacteria and total aerobes. The middle sections of the duodenum, jejunum, and ileum were collected for intestinal morphology. Over the entire experimental period (d 1-42), the weight gain and feed conversion of birds fed fermented rapeseed meal were superior (p<0.05) to that of birds fed nonfermented rapeseed meal and did not differ from the soybean control. On day 42, birds fed fermented rapeseed meal had higher (p<0.05) total tract apparent digestibility coefficients for dry matter, energy, and calcium than birds fed non-fermented rapeseed meal. Colon and ceca digesta from broilers fed the fermented feed had higher (p<0.05) lactobacilli counts than birds fed the control and non-fermented rapeseed meal diets on day 21 and 42. Fermentation also improved (p<0.05) villus height and the villus height:crypt depth ratio in the ileum and jejunum on day 21 and 42. The results indicate that solid-state fermentation of rapeseed meal enhanced performance and improved the intestinal morphology of broilers and may allow greater quantities of rapeseed meal to be fed to broilers potentially reducing the cost of broiler production.

Partial or complete replacement of fishmeal with fermented soybean meal on growth performance, fecal composition, and meat quality in broilers

  • Premathilaka, Kumudu Thakshila;Nawarathne, Shan Randima;Nambapana, Maleeka Nadeemale;Macelline, Shemil Priyan;Wickramasuriya, Samiru Sudharaka;Ang, Li;Jayasena, Dinesh Darshaka;Heo, Jung Min
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.824-839
    • /
    • 2020
  • The current study was aimed to examine the effect of partial or complete replacement of fishmeal (FM) with fermented soybean meal (FSBM) on growth performance, fecal composition, and meat quality in broiler chickens. A total number of 240 one-day-old broiler chicks were randomly allotted into four dietary treatments with six replications and ten birds per one pen. Dietary treatments were followed as; 1) Diet incorporated with 4% FM without FSBM (Control), 2) Diet incorporated with 3% FM and 2% FSBM (FSBM2), 3) Diet incorporated with 2% FM and 3% FSBM (FSBM3) and 4) Diet incorporated with 4% FSBM without FM (FSBM4). Body weight and feed intake were recorded weekly for 35 days of the experimental period. Moreover, fecal samples were collected to evaluate moisture, ash, nitrogen, calcium and phosphorus content on day 21 post-hatch. On day 35, two birds were sacrificed from each pen to measure meat quality parameters and visceral organ weights. Results revealed that, no dietary treatment effect (p > 0.05) was observed either in both body weight or average daily gain of broilers within the entire experimental period while broilers fed FSBM2 increased (p < 0.05) average daily feed intake by 10.07% whereas FSBM4 improved (p < 0.05) feed efficiency ratio by 8.45% compared to birds fed other dietary treatments on day 7 post-hatch. Besides, birds fed FSBM3 obtained the improved (p < 0.05) feed conversion ratio over the birds fed control diet by 7.51% from hatch to day 35 post-hatch (1.60 vs. 1.73). Nevertheless, no difference (p > 0.05) was detected on visceral organ weight, proximate composition and physicochemical characteristics of meat while broilers offered FSBM4 obtained the lowest (p < 0.05) calcium and phosphorous in faces (2.27% and 1.21% respectively) over those offered control feed and other FSBM treatments. In conclusion, FSBM would be a better replacement for ousting FM partially or completely in broiler diet as it did not impair the growth performance and meat quality while reducing the calcium and phosphorous excretion in broilers for 35 days post-hatch.

Fermented Feeds Production of Garbages using Kudzu Creeper as a Bulking Material (칡덩굴을 이용한 남은 음식물의 발효사료화)

  • 박진식;장성호;김수생
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.2
    • /
    • pp.90-95
    • /
    • 1999
  • The study on the fermented feeds production of garbages have been conducted to determine the optimum operation condition. The process variables considered for this study were initial air flow rate and temperature control. The results showed that optimum air requirement was $4{\ell}-air/min{\cdot}kg-$ garbages on dry weight basis which is equal to $0.8{\ell}-air/min{\cdot}kg-$ garbages on the basis of 80% moisture content. The optimum initial temperature control in the reactor was $40^{\circ}C$. Crude fiber content of fermented final byproducts were higher than feedstuffs standard for pig breeding and consequently final byproducts had to mix with single-component feed.

  • PDF

A NOTE ON THE REMOVAL OF PHYTATE IN SOYBEAN MEAL USING Aspergillus usami

  • Ilyas, A.;Hirabayasi, M.;Matsui, T.;Yano, H.;Yano, F.;Kikishima, T.;Takebe, M.;Hayakawa, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.2
    • /
    • pp.135-138
    • /
    • 1995
  • Soybean meal was fermented by Aspergillus usami in order to reduce phytate content. Aflatoxin B1 was not detected in the fermented soybean meal. The contents of crude protein, crude fiber, ether extract and crude ash were slightly increased following fermentation with a concomitant reduction in nitrogen free extract. Though the fermentation partly degraded proteins in the soybean meal, there was small difference in amino acid composition between the soybean meal and the fermented soybean meal. The results showed that the fermentation did not affect nutritional value of protein in soybean meal. Approximately 55% of phosphorus extracted by trichloroacetic acid was inositol hexaphosphate (phytate) in the soybean meal. The content of inositol tetra to hexaphosphates was not detected in the fermented soybean meal. These results indicated that the fermentation almost completely eliminated phytate in soybean meal. Phytase activity was not detected in the unfermented soybean meal. However, the enzyme activity in the fermented soybean meal was 167.7 U/g. When the fermented soybean meal in supplemented in formula feeds, phytase in the fermented soybean meal might partly degrade the phytate in other ingredients in the digestive tract. The fermented soybean meal is possibly used as a phytate-free protein source of feed, which contains high available phosphorus.

Safety Assessment Systems for Microbial Starters Derived from Fermented Foods

  • Heo, Sojeong;Kim, Tao;Na, Hong-Eun;Lee, Gawon;Park, Jung-Hyun;Park, Hee-Jung;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1219-1225
    • /
    • 2022
  • Microorganisms involved in food fermentation not only improve the aroma and taste of the food, but also enhance its preservation. Thus, they are added as starter cultures to boost the final product quality of commercial fermented foods. Although these microorganisms originate from fermented foods and have a long history of consumption, the European Union recently applied the concept of Qualified presumption of Safety (QPS), which is a safety evaluation system for microorganisms used in food or feed in Europe. The QPS system is a species-level safety system and shares results with the European Novel Food System, a strain-level safety evaluation system. In the United States, microorganisms added to fermented foods are considered as food additives or Generally Recognized as Safe substance. In Korea, food microbe lists are presented at the species level. Moreover, the nation has established a strain-oriented evaluation system that applies temporary safety evaluation methods for food raw materials as well as new raw materials. However, when it comes to microorganisms isolated from traditional fermented foods and other fermented food products, there is no definition of the term "species," and there is a lack of an evaluation system at the species level. Therefore, such an evaluation system for microbial species used in Korean fermented foods is necessary.