• Title/Summary/Keyword: fermented bacteria

Search Result 1,250, Processing Time 0.032 seconds

Isolation and Characterization of Exopolysaccharide Producing Lactic Acid Bacteria from Korean Soy Sauce and Soybean Paste (전통 장류로부터 Exopolysaccharide 생성 유산균의 분리 및 특성)

  • Yun, Hye Ju;Lee, You Jung;Yeo, Soo-Hwan;Park, Hye Young;Park, Heui-Dong;Baek, Seong Yeol
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.190-197
    • /
    • 2013
  • Three slime-forming lactic acid bacteria were isolated from traditional Korean fermented soy sauce and soybean paste and shown to produce exopolysaccharides (EPS) in sucrose media. By isolating the strains, examining their morphological characteristics and determining their 16S rDNA sequences, N58-5 and K6-7 were identified as Leuconostoc mesenteroides and N45- 10 as Leuconostoc citreum. The acid and bile tolerances of these three strains were investigated. Amongst the three lactic acid bacteria, Leuc. citreum N45-10 exhibited the highest viability ($10^5-10^6$ CFU/ml) in 0.05 M sodium phosphate buffer (pH 0.3) for 2 h, in artificial gastric juice for 2 h and in 0.3%, 0.5% oxgall for 24h. Leuc. mesenteroides K6-7, N58-5 and Leuc. citreum N45- 10 were grown in sucrose liquid medium and 8.16 g/L, 3.65 g/L, 16.17 g/L of EPS was collected, respectively. The hydrolyzed EPS was analyzed by HPLC in order to determine the sugar composition of EPS. Leuc. mesenteroides K6-7 and N58-5 showed two peaks indicating glucose and fructose, thus they were determined to be hetero-type polysaccharides. Leuc. citreum N45-10 showed only the glucose polymer, indicating it to be a homo-type polysaccharide. In addition, all three lactic acid bacterial hemolysis did not demonstrate a clear zone in blood agar in the area surrounding a lactic acid bacteria colony.

Changes in Shelf-Life, Water Activity, and Texture of Rye-Wheat Mixed Bread with Naturally Fermented Raisin Extract and Rye Sourdough during Storage (건포도 천연 발효액과 호밀 사워도우를 이용한 호밀-밀 혼합빵의 저장 중 저장수명, 수분활성도 및 조직감의 변화)

  • Kim, Mun-Yong;Chun, Soon-Sil
    • Korean journal of food and cookery science
    • /
    • v.25 no.2
    • /
    • pp.170-179
    • /
    • 2009
  • This study examined effects on shelf-life extension and prevention of starch retrogradation in rye-wheat mixed bread (RWMB) samples prepared with substitutions of 20, 40, 60, and 80% rye sourdough (RSD) as well as a control made with the addition of naturally fermented raisin extract. These effects were investigated using mold growth, water activity, and textural characteristics during a storage period of 8 days at $20^{\circ}C$. The activities of the rye sourdough were examined in terms of pH, total titratable acidity, general bacteria, lactic acid bacteria, and yeast counts. As the incubation time of the sour dough increased, pH decreased, while total titratable acidity increased. General bacteria, lactic acid bacteria, and yeast counts increased with increasing incubation time. Mold grew on the external surface of the control group after 6 days and on the surface of the RSD bread samples after 8 days, respectively. With regard to water activity, the control group had increasing activity as the storage period increased. In addition, the 20, 40, 60, and 80% RSD samples had increasing water activities until the 4th day however, these strongly decreased by the 6th day. In terms of textural characteristics, as the storage period increased, hardness increased, while springiness, cohesiveness, and resilience decreased. There were no significant differences in gumminess among the samples. The control, 20, 40, and 60% RSD samples had decreases in chewiness with increasing storage time, however, the 40% RSD sample did not differ significantly during the storage period. Finally, water activity was negatively correlated with hardness (p<0.05). In conclusion, the results indicate that substituting rye sourdough in rye-wheat mixed bread has a prolongation effect on shelf-life, but no effect on the prevention of starch retrogradation.

Fermentation Characteristics of Kimchi Supplemented with Cheese. (치즈를 첨가한 김치의 발효 특성)

  • 배인휴;최성희;최희영
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.4
    • /
    • pp.415-419
    • /
    • 2002
  • The replacement effects of cheese far salted and fermented fish on growth of lactic acid bacteria, fermentation velocity and sensory characteristics of Kimchi were investigated. In both control and cheese Kimchi, the total viable cell count of lactic acid bacteria was increased rapidly during the initial 2 days of fermentation. From 3 days after preparation, Kimchi added with cheese showed higher number of lactic acid bacteria than control Kimchi. The pH of Kimchi decreased rapidly after a small increase at the first day of fermentation, reaching 4.18-4.33 at the third day of fermentation, and the pH was slightly lower in Kimchi added with cheese than in control. Proximate analysis of Kimchi added with cheese was slightly higher in moisture and lower in crude protein and fat than control Kimchi. Sensory evaluation of the Kimchi fermented for 3 days showed that the Kimchi added with 3 or 5% of cheese had higher scores of appearance, flavor and overall taste than the control Kimchi.

Effect of Lactic Acid Bacteria and Temperature on Kimchi Fermentation (II) (젖산균과 온도가 김치 발효에 미치는 영향(II))

  • Cho, Young;Rhee, Hei-Soo
    • Korean journal of food and cookery science
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 1991
  • The effects of lactic acid bacteria on the chemical and microbial changes of fermented kimchi at various temperatures were studied. Kimchi was homogenized and was sterilized by ultra violet (UV), then Lactobacillus plantarum, Leuconostoc mesenteroides, Pediococous acidilactici, Lactobacillus brevis and the mixture of these bacteria inoculated on sterilized kimchi, respectively. The measurement of alcohol by gas chromatography, and changes of sugar content and total viable count were investigated and palatability test was carried while inoculated kimchi was fermented at $30^{\circ}C$, $21^{\circ}C$ and $7^{\circ}C$. Ethyl alcohol was detected by GC in sample I (original Kimchi homogenate), III(inoculated Leu. mesenteroides), V(inoculated with Lac. brevis), then especially, more content were detected at $14^{\circ}C$. Sugar content reduced in accordance with fermentation proceeding. Total viable count increased at early fermentation stage, but thereafter decreased slowly. In the result of palatability test, sample I was the highest at all temperatures, sample III and IV (inoculated with mixed lactic acid bacteria) was the following in that kimchi odor and taste and the temperature.

  • PDF

Fermentative Quality of Guineagrass Silage by Using Fermented Juice of the Epiphytic Lactic Acid Bacteria (FJLB) as a Silage Additive

  • Bureenok, S.;Namihira, T.;Tamaki, M.;Mizumachi, S.;Kawamoto, Y.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.6
    • /
    • pp.807-811
    • /
    • 2005
  • This experiment examined the characteristics of fermented juice of epiphytic lactic acid bacteria (FJLB) prepared by the addition of glucose, sucrose and molasses as a fermentation substrate. The effect of FJLB on the fermentative quality and changes in chemical composition during fermentation of guineagrass silage were also investigated. The pH value of the silages treated with FJLB rapidly decreased, and reached to the lowest value within 7 days of start of fermentation, as compared to the control. The number of lactic acid bacteria (LAB) in the treated silages increased for the first 3 days, thereafter the number of LAB declined gradually up to the end of the experiment. Silages treated with FJLB had larger populations of LAB than the control. Ammonia-nitrogen production increased throughout the ensiling period, which in the control and no-sugar added FJLB silages were higher than the other treated silages. Lactic acid levels varied with the time of ensiling and among the silage treatments. For any sugar FJLB treated silages, the lactic acid increased initially, and then slightly reduced to less than 50 g/kg of dry matter until 49 days after ensiling, except the silage treated with glucose added FJLB. Nevertheless, lactic acid content of the control decreased constantly from the beginning of ensiling and was not found after 35 days. Moreover, acetic acid content increased throughout the ensiling period. All the FJLB treated silages had significantly (p<0.05) lower pH and ammonia-nitrogen content, while significantly (p<0.05) higher lactic acid content and V-score value compared with the control. This study confirmed that the applying of FJLB with any sugar substrate improved fermentative quality of silage.

Studies on the Enhanced Physiological Activities of Mixed Lactic Acid Bacteria Isolated from Fermented Watery Kimchi, Dongchimi (발효된 물김치인 동치미에서 분리한 혼합 젖산균의 생리활성 증진에 대한 연구)

  • Choi, Moon-Seop;Kim, Dong-Min;Oh, Kye-Heon
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.245-252
    • /
    • 2015
  • The aim of this study was to investigate the efficacy of enhanced physiological activities in cultures isolated from Korean fermented watery Kimchi, Dongchimi, of single lactic acid bacteria (LAB), and when these three are mixed LAB as probiotics. Using the BIOLOG system and 16S rRNA sequencing, the isolates were characterized, and identified and assigned to Leuconostoc mesenteroides DK-3, Leuconostoc dextranicum DK-6, and Lactobacillus curvatus DK-13, respectively. Growth rate and pH changes, production of organic acids as metabolites, and physiological activities of the single and mixed LAB cultures, were monitored and compared. In mixed LAB cultures after 72 h of incubation, the maximum concentrations of lactic acid and acetic acid were approximately 340.5 mM and 191.9 mM, respectively, and pH changed from 7.00 to 3.62. Mixed LAB cultures were able to eliminate 96.3% of nitrite. Activities of antioxidant and ${\beta}$-galactosidase were 60.3% and 16.8 units/mg, respectively. Significant antibacterial activity of the concentrated supernatants was demonstrated against several food-poisoning bacteria. Physiological activities obtained from the mixed LAB cultures have been shown to be considerably higher than those of single LAB cultures. In conclusion, these studies demonstrate that compared to the single cultures, all physiological activities in mixed LAB cultures are significantly enhanced.

Identification of Lactic Acid Bacteria in Galchi- and Myeolchi-Jeotgal by 16S rRNA Gene Sequencing, MALDI-TOF Mass Spectrometry, and PCR-DGGE

  • Lee, Yoonju;Cho, Youngjae;Kim, Eiseul;Kim, Hyun-Joong;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1112-1121
    • /
    • 2018
  • Jeotgal is a Korean traditional fermented seafood with a high concentration of salt. In this study, we isolated lactic acid bacteria (LAB) from galchi (Trichiurus lepturus, hairtail) and myeolchi (Engraulis japonicas, anchovy) jeotgal on MRS agar and MRS agar containing 5% NaCl (MRS agar+5% NaCl), and identified them by using 16S rRNA gene sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as culture-dependent methods. We also performed polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) as a culture-independent method to identify bacterial communities. Five samples of galchi-jeotgal and seven samples of myeolchi-jeotgal were collected from different regions in Korea. A total of 327 and 395 colonies were isolated from the galchi- and myeolchi-jeotgal samples, respectively. 16S rRNA gene sequencing and MALDI-TOF MS revealed that the genus Pediococcus was predominant on MRS agar, and Tetragenococcus halophilus on MRS agar+5% NaCl. PCR-DGGE revealed that T. halophilus, Tetragenococcus muriaticus, and Lactobacillus sakei were predominant in both types of jeotgal. T. halophilus was detected in all samples. Even though the same species were identified by both culture-dependent and -independent methods, many species identified by the culture-dependent methods were not in the bacterial list identified by the culture-independent methods. The distribution of bacteria in galchi-jeotgal was more diverse than in myeolchi-jeotgal. The diverse LAB in galchi- and myeolchi-jeotgals can be further studied as candidates for starter cultures to produce fermented foods.

Fermentation Characteristics of Low-sodium Kimchi by Kimchi Lactic Acid Bacteria Starters (김치 유산균 Starter를 이용한 저염김치의 발효 특성)

  • Huang, Ying;Lee, Yoona;Lee, Bora;Kim, Mi Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.801-807
    • /
    • 2016
  • In Western countries, kimchi, the Korean traditional fermented cabbage, is considered to be a healthy. However, it is one of the main sources of the high sodium content of the Korean diet. In order to decrease the sodium content, we manufactured a low-sodium kimchi (LK, salinity 1.0%) and 4 additional low-sodium kimchi starters in which each of 4 lactic acid bacteria (Lb. sakei 1, Lb. sakei 2, Lb. palntarum and W. koreensis) were added. The LKL1 to LKL4 samples were prepared by adding 4 single LAB starters, each with an inoculum size of $10^6CFU/g$, when the cabbage was mixed with kimchi sauce. The kimchi starters were fermented at $10^{\circ}C$ until reaching 0.5% acidity, and then stored at $-1.5^{\circ}C$ until reaching 0.75% acidity. The pH and acidity of the starter kimchi changed more rapidly in the early phase of fermentation (up to 0.75% acidity) than control low-sodium kimchi. After the acidity of the kimchi starters reached 0.75% it remained constant. As the fermentation progressed, the total aerobic and lactic acid bacteria concentrations in the kimchi starter with added Lb. sakei 1 were the same as in the control low-sodium kimchi. The low-sodium kimchi fermentation of the kimchi starter with added Lb. palntarum progressed differently due to a difference in acid resistance. The kimchi starter with added Lb. sakei 2 had an overall liking score that was slightly higher than that of the control low-sodium kimchi due to a lower off-flavor.

Fermentation Characteristics of Shindari Added with Carrot (당근을 첨가한 쉰다리의 발효 특성)

  • Kim, Soyeon;Park, Eun-Jin
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • Shindari is a traditional fermented drink of Jeju in Korea, which is made with boiled barley and nuruk for short fermentation periods. This study determined chemical, microbiological, and sensory characteristics of the modified Shindari with 15% carrots as an additive (carrot Shindari), and this study compared it with a traditional Shindari as a control. After fermentation at $30^{\circ}C$ for a day, the pHs of the carrot Shindari and traditional Shindari largely decreased, and the total acidities increased in both of the Shindari. The significantly higher scores of Hunter's color values were observed more in carrot Shindari than in traditional Shindari. Also, carrot Shindari (0.4954 g/100 g) had a significantly higher content of vitamin C than traditional Shindari (0.0030 g/100 g). The most abundant free sugar and organic acid were glucose and lactic acid, respectively, in both of the Shindari. The total numbers of bacteria, fungi and lactic-acid bacteria in both samples increased by log 3 CFU/mL after fermentation. Based on 16S ribosomal RNA gene analysis, the dominant lactic-acid bacteria was Pediococcus acidilactici in both samples. The DPPH (1.1-diphenyl-2-picrylhydrazyl) radical scavenging activity of carrot Shindari (60.13%) was higher than that of traditional Shindari (23.70%). In sensory evaluations (taste, flavor, color, and overall acceptance), the carrot Shindari had higher scores in all these values. In this study, the modified Shindari with carrot presenting high sensory characteristic as well as chemical and microbiologic characteristics provide an opportunity to improve the application of a traditional fermented drink of Jeju, Shindari.

Production of Fermented Saccharina Japonica Extract with Enhanced GABA Content (GABA 함량이 강화된 발효다시마 추출액 제조)

  • Hur, Sun-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.517-526
    • /
    • 2022
  • The purpose of this study was to enhance the gamma-aminobutyric acid (GABA) production of sea tangle extracts, through techniques based on enzymatic hydrolysis and the addition of mixed fermentative lactic acid bacteria. GABA production in the strains was qualitatively confirmed via detection of colored spots using thin layer chromatography. L. plantarum KCTC 21004, L. acidophilus KCTC 3164 and L. sakei subsp. sakei KCTC 3598 were selected as the suitable strains for GABA production. As for the characteristics of fermentation of lactic acid bacteria using the selected strain, as the fermentation time increased, the titrated acidity increased and the pH showed a tendency to decrease. Among the three strains with excellent GABA production ability, L. plantarum KCTC 21004 showed excellent GABA production of 136.4 mg/100g. These research results are expected to be provided a basis for the utilization of lactic acid bacteria in GABA production using a sea tangle extract.