• Title/Summary/Keyword: fermentations

Search Result 180, Processing Time 0.031 seconds

Functional Characterization of khadi Yeasts Isolates for Selection of Starter Cultures

  • Motlhanka, Koketso;Lebani, Kebaneilwe;Garcia-Aloy, Mar;Zhou, Nerve
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.307-316
    • /
    • 2022
  • Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HS-SPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.

Functional Properties of Peptides in Mixed Whey and Soybean Extracts after Fermentation by Lactic Acid Bacteria

  • Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ha-Neul Kim;Ji-Won Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.113-125
    • /
    • 2023
  • In this study, we explored the synergistic effects of whey protein concentrate (WPC) and soybean protein components after fermentation with lactic acid bacteria isolated from kimchi, and identified several peptides with desirable physiological functions, proteolysis, and immune effects. Antioxidant activity was determined using 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid, 1,1-diphenyl-2-picrylhydrazyl, ferric-reducing antioxidant power, and hydroxyl radical scavenging assays, followed by cross-validation of the four antioxidant activities. These assays revealed that samples with a 8:2 and 9:1 whey to soy ratio possessed higher antioxidant activity than the control samples. Antibacterial potency testing revealed high antibacterial activity in the 9:1 and 8:2 samples. Cytotoxicity testing of samples using 3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide revealed that only the 10:0, 1:9, and 0:10 samples had <80% viable cells, indicating no significant cytotoxicity. Nitric oxide (NO) assays revealed that NO expression was reduced in 8:2, 5:5, and 0:10 protein ratio fermentations, indicating low inflammatory reaction stimulatory potential. Cytokine expression was confirmed using an enzyme-linked immunosorbent assay kit. The 8:2 sample had the lowest inflammatory cytokine (interleukin [IL]-1α, IL-6, and tumor necrosis factor-α) levels compared with the lipopolysaccharide-treated group. Amino acid profiling of the 8:2 sample identified 17 amino acids. These results suggest that inoculating and fermenting Lactobacillus plantarum DK203 and Lactobacillus paracasei DK209 with an 8:2 mixture of WPC and soybean protein releases bioactive peptides with excellent anti-inflammatory and antioxidant properties, making them suitable for functional food development.

Quality comparison of non-thermal sterilized raw apple vinegar and commercial apple vinegar products

  • Sun Hwa Kim;Ji-Hyung Seo;Yong-Jin Jeong
    • Food Science and Preservation
    • /
    • v.31 no.2
    • /
    • pp.235-244
    • /
    • 2024
  • A nonthermally sterilized raw apple vinegar was manufactured using an ultra-fine filtration process (0.2 ㎛ membrane filter) and its quality was comparable to commercially available vinegar products. First, using apple concentrate as a raw material, it was possible to produce non-thermal sterilized Using a two-stage fermentation process of alcohol and acetic acid fermentations, a non-thermally sterilized raw apple vinegar with pH 2.94 and an acidity of 6.20% was produced from an apple concentrate. The fermentation process increased the browning index significantly. However, the fundamental quality parameters of the non-thermal sterilized raw apple vinegar (A) with sterilized apple vinegar (B) did not differ significantly. The pH (2.92-2.95) of apple vinegar (A and B) was higher than that (pH 2.65-2.70) of commercial vinegar (C and D), and the total acidity, which is in the range of 6.20-6.21% and 6.53-6.90%, respectively, was higher in samples C and D than in samples A and B. However, four kinds of organic acids were detected in non-thermal sterilized raw apple vinegar (A), and its total organic acid content (6,245.00 mg%) was significantly higher than that of other samples (B, C, D) (p<0.05). In particular, malic acid content, as a main organic acid in apples, was very high in sample (A) (244.83 mg%) and sample (B) (210.21 mg%), compared to commercial products C (125.78 mg%) and D (86.90 mg%). The total polyphenol content and antioxidant activity of fermented apple vinegar (A, B) were more than twice as high as those of commercial products (C, D). Vinegar A had higher total polyphenol content than vinegar B. The above results suggest it is possible to manufacture and commercialize non-thermal sterilized raw apple vinegar with higher organic acid content and antioxidant properties using ultra-fine filtration.

Strain Improvement through Protoplast Formation and Mutation of Inonotus obliquus Mycelia for Enhanced Production of Innerpolysaccharides (IPS) in Suspended Mycelial Cultures (Inonotus obliquus 의 균사체 액상배양에서 원형질체 형성과 돌연변이를 통한 단백다당체 고생산성 균주 개발)

  • Hong, Hyeong-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.155-166
    • /
    • 2010
  • Studies on the production of cell-wall bound innerpolysaccharides (IPS) (soluble ${\beta}$-D-glucan) have been performed by use of suspended myelial cultures of Inonotus obliquus. This product has promising potentials as an effective antidiabetic as well as an immunostimulating agents. As a first step to enhanced production of IPS, Intensive strain improvement programs were carried out by obtaining a large amounts of protoplasts for the isolation of single cell colonies. Rapid and large screening of high-yielding producers was possible because about fivefold higher amount of protoplasts ($2.3{\times}10^6$ protoplasts/mL) could be recovered with relatively high regeneration rates of $10^{-2}{\sim}10^{-3}$ by applying a modified filtration method, as compared to the previously used trapping method. A basic protocol necessary for UV-mutation of the protoplasts was also developed, resulting in several overproducing variants with good fermentation properties. Since the amount of IPS extracted from the mycelial cell walls of I. obliquus turned out to be almost constant per g DCW, increase in cell mass was considered the most important factor for the enhancement in IPS production. Therefore, attempts were made to screen mutant cells showing rapid mycelial growth rate in the final suspended cultures. Notably, the mutant strains showing an active cellgrowth in the preceding solid growth cultures were observed to produce higher amount of IPS in the suspended fermentations as well. A striking mutant, OBLQ756-15-5 strain, obtained from the survivors of a harsh UV-treated condition (97% death rate) was found to stably produce as high cell mass as 22 g DCW/L in the final fermentations. Currently, this strain is being tested for development of a scaled-up fermentation process for mass production of IPS.

Establishment of Miniaturized Cultivation Method for Large and Rapid Screening of High-yielding Monascus Mutants, and Enhanced Production of Monacolin-K through Statistical Optimization of Production Medium (Monascus 균사체의 소규모 배양을 통한 고생산성 균주의 대규모 선별방법 확립과 통계적 생산배지 최적화를 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.305-312
    • /
    • 2007
  • It is crucial to develop a miniaturized cultivation method for large and rapid screening of high-yielding mutants of monacolin-K, a powerful anti-hypercholesterolemic secondary metabolite biosynthesized by the fungal cells of Monascus ruber. In order to investigate as many strains as possible in a short time, a miniaturized fermentation method especially suitable for the cultivation of the filamentous Monascus mutants was developed using $50m{\ell}$ culture-tube ($7m{\ell}$ of working volume) instead of the traditional $250m{\ell}$ flask ($50m{\ell}$ of working volume). Generally, in filamentous fungal cell fermentations, morphologies in growth and production cultures should be maintained as thick filamentous and compact-pelleted (usually less than 1 mm in diameter) forms, respectively, for enhanced production of secondary metabolites in final production cultures. In this study, we intended to induce the respective optimal morphologies in the miniaturized culture system for the purpose of rapid screening of overproducers. Miniaturized growth culture system was successfully developed due to the mass production of spores in the statistically optimized solid medium. When large amounts of spores were inoculated into the growth cultures, and brown rice flour (20 g/L) was also supplemented to the growth medium, dense filamentous morphologies were successfully induced in the growth cultures performed with the 50 ml culture tubes. It was implied that the amounts of spores inoculated into the growth tube-cultures and the growth medium components should be the key factors for the induction of the filamentous forms in the growth fermentations. Furthermore, in order to statistically optimize production medium, multiple experiments based on Plackett-Burman design and response surface method (RSM) were carried out, resulting in more than 2 fold enhanced production of monacolin-K in the final production cultures with the optimized production medium. Notably, under the production culture conditions with the statistically optimized medium, optimal pellet sizes below 1 mm in diameter were reproducibly induced, in contrast to the thick and viscous filamentous morphologies observed in the previous production cultures.

Effect of Feed Value and Fermentative Quality According to Harvesting Time of Barley and Wheat Grain Silage (수확시기에 따른 맥류 곡실발효사료의 사료가치 및 발효품질)

  • Song, Tae-Hwa;Oh, Young-Jin;Kang, Hyeon-Jong;Park, Tae-Il;Cheong, Young-Keun;Kim, Yang Kil;Kim, Bo-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.2
    • /
    • pp.174-179
    • /
    • 2015
  • This experiment was conducted to determine the optimal harvesting time for barley and wheat grain for the production of fermented grain feeds, and to investigate their fermentation quality according to harvesting time. As a result, grain moisture content was decreased with late harvest, whereas spike weight ratio and 1000 grain weight were increased with prolonged period after heading. Grain yielding was increased with late harvesting time significantly at p<0.05. Crude protein content was increased with late harvesting time, but crude fiber content was decreased. Crude fat and ash content were slightly decreased, but not statistically significant. Comparing the effects of fermentation on feed value of winter cereal grain, the approximate compositions were slightly increased after fermentation, but the difference was not significant. Fermentations resulted in increasing the pH value of winter cereal grain silage with late harvesting time, but decreasing the lactic acid content (p<0.05). No significant difference was found in acetic acid, and butyric acid was not detected. Considering the quantity and quality of fermentation, barley and wheat can be used for winter cereal grain silage when they were harvested at 35 days and 40-45 days after heading, respectively.

Determination of Oxygen Transfer Coefficient in Fed-Batch Culture of Streptomyces avermitilis with Concentrated Medium Control (농축 배지 조절 유가식 배양에 의한 Streptomyces avermitilis의 산소전달계수 측정)

  • 오종현;전계택;정요섭
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.516-522
    • /
    • 2001
  • The large-scale production of antibiotics by filamentous mycelial organism requires and adequate supply of dissolved oxygen. In terms of productivity, it means that oxygen transfer is the rate-limiting step. Therefore, the oxygen transfer coefficients(K$\_$L/A) were determined in a broth involving a filamentous mycelial organism such as Streptomyces avermitilis for use in fermentations. To determine (K$\_$L/A) inn a stirred vessel, a great deal of effort is required to provide all the cells with a sufficient oxygen supply. To overcome the oxygen limitation in a batch culture, a fed-batch culture was applied to control the growth rate by an intermittent supply of nutrients. Thus, it was possible to maintain a suitable dissolved oxygen concentration at a low agitation rate. The optimal agitation speed was 350 rpm at low cell concentrations (below 7 g/L) by considering the efficiency of agitation and shear stress. The (K$\_$L/A) was found to decrease from 64.26 to 29.21h.$\^$-1/ when the biomass concentration was increased from 9.82 to 12.06 g/L. In addition, and increase in viscosity was also observed during the growth phase. By comparing the (K$\_$L/A) values for the various agitation and aeration rates, it was found that the effect of an increase in (K$\_$L/A) by aeration was reduced dramatically at high biomass concentrations. However, this effect was not observed when altering the agitation rate. This suggests that controlling the dissolved oxygen concentration by altering the agitation rate was more efficient than increase the aeration rate.

  • PDF

Target Identification for Metabolic Engineering: Incorporation of Metabolome and Transcriptome Strategies to Better Understand Metabolic Fluxes

  • Lindley, Nic
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2004.06a
    • /
    • pp.60-61
    • /
    • 2004
  • Metabolic engineering is now a well established discipline, used extensively to determine and execute rational strategies of strain development to improve the performance of micro-organisms employed in industrial fermentations. The basic principle of this approach is that performance of the microbial catalyst should be adequately characterised metabolically so as to clearlyidentify the metabolic network constraints, thereby identifying the most probable targets for genetic engineering and the extent to which improvements can be realistically achieved. In order to harness correctly this potential, it is clear that the physiological analysis of each strain studied needs to be undertaken under conditions as close as possible to the physico-chemical environment in which the strain evolves within the full-scale process. Furthermore, this analysis needs to be undertaken throughoutthe entire fermentation so as to take into account the changing environment in an essentially dynamic situation in which metabolic stress is accentuated by the microbial activity itself, leading to increasingly important stress response at a metabolic level. All too often these industrial fermentation constraints are overlooked, leading to identification of targets whose validity within the industrial context is at best limited. Thus the conceptual error is linked to experimental design rather than inadequate methodology. New tools are becoming available which open up new possibilities in metabolic engineering and the characterisation of complex metabolic networks. Traditionally metabolic analysis was targeted towards pre-identified genes and their corresponding enzymatic activities within pre-selected metabolic pathways. Those pathways not included at the onset were intrinsically removed from the network giving a fundamentally localised vision of pathway functionality. New tools from genome research extend this reductive approach so as to include the global characteristics of a given biological model which can now be seen as an integrated functional unit rather than a specific sub-group of biochemical reactions, thereby facilitating the resolution of complexnetworks whose exact composition cannot be estimated at the onset. This global overview of whole cell physiology enables new targets to be identified which would classically not have been suspected previously. Of course, as with all powerful analytical tools, post-genomic technology must be used carefully so as to avoid expensive errors. This is not always the case and the data obtained need to be examined carefully to avoid embarking on the study of artefacts due to poor understanding of cell biology. These basic developments and the underlying concepts will be illustrated with examples from the author's laboratory concerning the industrial production of commodity chemicals using a number of industrially important bacteria. The different levels of possibleinvestigation and the extent to which the data can be extrapolated will be highlighted together with the extent to which realistic yield targets can be attained. Genetic engineering strategies and the performance of the resulting strains will be examined within the context of the prevailing experimental conditions encountered in the industrial fermentor. Examples used will include the production of amino acids, vitamins and polysaccharides. In each case metabolic constraints can be identified and the extent to which performance can be enhanced predicted

  • PDF

Isolation of Glucoamylase Producing Yeasts and its Enzymatic Characteristics (Glucoamylase 생성효모의 분리와 효소학적 특성)

  • Park, So-Young;Choi, Soon-Young;Min, Kyung-Hee
    • The Korean Journal of Mycology
    • /
    • v.27 no.6 s.93
    • /
    • pp.386-393
    • /
    • 1999
  • Ethanol is considered as one of the most suitable substitutes for the petroleum, since it offers attractive functional features at an economical cost. Glucoamylase producing yeasts were isolated and characterized. Based on the morphological character, carbon fermentations, assimilation of carbon and nitrate, growth on vitamine-free medicine, and urease activity, five isolates of Saccharomyces diastaticus, two isolates of Saccharomycopsis fibuligera, and two of Schwanniomyces occidentalis, and each isolate of Ambrosiozyma monospora and Lipomyces kononenkoae were identified. Among 12 isolates, one of the S. diastaticus, E3 showed the highest activity of glucoamylase and identified as Saccharomyces diastaticus. The hydrolysis of starch by the E3 strain showed the release of considerable amount of reducing sugar, along with the reduction in iodine staining capacity. The product of action of glucoamylase, glucose was determined by thin-layer chromatography. The enzyme activity was found to be stable in broad pH range of $5.0{\sim}7.0$ with optimal activity at pH $5.0{\sim}6.0$. The enzyme showed optimal antivity at $50^{\circ}C{\sim}60^{\circ}C$. Soluble starch and glucose were better carbon sources for the enzyme production than xylose and glycerol. $Na^+\;and\;Mg^{2+}$ increased the glucoamylase activity, however $Hg^{2+}\;and\;Ag^{2+}$ inhibited the activity. Soluble starch was the best substrate for the enzyme activity.

  • PDF

Operation of Sewage Sludge Composting Plant(Capacity of 1 ton/day) (1톤/일 처리규모의 하수슬러지 퇴비화 실증운전)

  • Joung, Kyong-Chul;Kwak, No-Hyuk;Park, Sung-Hee;Phae, Jae-Kuen
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Aim to get operation factors, an In-vessel Composting of Wastewater Sludge was operated. The composting equipment is consisted of three chamber, 1st, 2nd and 3rd consequently. In the results, the temperature of fermentation had shown that 1st fermentation chamber(F/C) temperature was higher than that of 2nd and 3rd fermentation chamber. The temperature was steady in all steps during the sludge being composted, the ranges of each step were $50^{\circ}{\sim}59^{\circ}C$ of 1st F/C, $41^{\circ}{\sim}50^{\circ}C$ of 2nd F/C, and $32^{\circ}{\sim}37^{\circ}C$ of 3rd F/C. Organic material content of the end product was 28% and that of pH was 7.5. Properties of the compost which have been composted on optimized condition, were shown that is acceptable to use as a fertilizer. Even in the winter time, the composting system was working well without any trouble. According to result of investigation, the end-product of the system was satisfied with the standard for a fertilizer usage. HRT(hydraulic retention time) of entire process was appropriated to be 14 days(0.9 days at drying and 3.5, 4.4, 5.2 days at each step of fermentations, respectively).

  • PDF