• Title/Summary/Keyword: fermentation medium

Search Result 861, Processing Time 0.034 seconds

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes;III. Isolation of Low Temperature Tolerant Methanogens (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究);III. 저온내성(低溫耐性) Methanogens의 분리(分離))

  • Kim, Kwang-Yong;Kim, Jai-Joung;Daniels, Lacy
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.362-371
    • /
    • 1996
  • This study was conducted to investigate the biochemical properties of isolated bacteria, low temperature tolerant methanogens which were selected for use as inoculum for anaerobic fermentation of agricultural and livestock wasted at low temperature. The results, obtained were summarized as follows: Low temperature tolerant methanogens were isolated from the samples which showed the high methanogenesis rate by enrichment culture at low temperature in methanol medium. These methanogens, Methanobacterium M-251 and Methanobacterium M-253 were isolated from swampy sediment at latitude $56.9^{\circ}$, Methanosarcina mazei M-372 from lake sediment IV at latitude $55.0^{\circ}$ N, and Methanobacterium formicicum M-375 from tidal land soil at latitude $37.0^{\circ}N$, respectively. The isolated anaerobic bacteria could not use sugars as carbon sources. The optimum pH value for the growth of M-251 and M-375 was 6.8, but those for M-253 and M-372 6.5 and 7.0, respectively. The minimum growth temperature of isolated, M-251 and M-253 were $8^{\circ}C$ and the optimum temperature $30^{\circ}C$, while the minimum of M-392 and M-395 were $13^{\circ}C$ and the optimum $37^{\circ}C$. The growth rate of isolates at $17.5^{\circ}C$ were lower by 32-50% than that of $30^{\circ}C$. The isolated Methanobacterium strains such as M-251, M-253, and M-375 have lower cell yield, 0.38-1.21g/1M $CH_4$ than 1.14-1.51g/1M $CH_4$ of Methanosarcina mazei M-372.

  • PDF

Studies on the Induction of Available Mutant of Acetic Acid Bacteria by UV-light Irradiation and NTG Treatment. - The Selection of Mutant Strains and Various Conditions for Acetic Acid Production - (Acetobacter sp.와 그 변이주(變異株)를 이용(利用)한 식초산(食酢酸) 발효(醱酵)에 관한 연구(硏究) - 변이주(變異株)의 선정(選定) 및 생산조건(生酸條件) -)

  • Kim, Chan Jo;Park, Yoon Joong;Lee, Seuk Keun;Oh, Man Jin
    • Korean Journal of Agricultural Science
    • /
    • v.7 no.2
    • /
    • pp.169-175
    • /
    • 1980
  • These studies were conducted to induce the available mutant strains in acetic acid bacteria by the irradiation of UV-light and the treatment of N-methyl-N'-nitro-N'-nitrosoguanidine. 109 strains which were capable of producing acid in the ethanol containing medium were isolated from vinegar and Kimchi collected from the region of Daejeon city. From the collection T-50 strain was identified to have a strong fermentation power and selected as a mother strain for the study. Two mutants were obtained by treating T-50 strain with UV and NTG, and these mutants had a rapid acid production in the initial stage. The study was then made to compare the basic condition for acetic acid production of the mother strain and two mutant strains. The summarized results were as follows; 1. The isolated strain (T-50) was identified as Acetobacter aceti by Bergey's manual and Acetic acid bacteria (Tokyo Univ. press). 2. The selected strain was died completely when the strain was irradiated with 15 W UV-light at a distance of 45 cm for 160 seconds. 3. The mutants such as U-48 and N-67 were rapid in the acetic acid production at the initial stage compare to the mother strain. 4. Acetic acid formation by the shaking culture method was maximized in 2 days culture, and the optimal temperature for acetic acid production was $30^{\circ}C$. 5. Acetic acid was effectively produced by the addition of 0.1% ammonium sulfate as a nitrogen source and was also produced rapidly by the addition of 0.1% glucose.

  • PDF

Effect of Dietary Dandelion (Taraxzcum coreanum) and Dandelion Fermented Probiotics on Productivity and Meat Quality of Broilers (민들레와 생균제의 첨가가 육계의 성장 및 체조성에 미치는 영향)

  • Oh, J.I.;Kim, G.M.;Ko, S.Y.;Bae, I.H.;Lee, S.S.;Yang, C.J.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.319-327
    • /
    • 2007
  • This experiment was designed to evaluate effects of Dandelion (Taraxzcum coreanum) and Dandelion fermented probiotics medium on the growth performance and meat quality in broiler chicks. A total of 150 "Ross" broilers,1-day old, were assigned to 5 treatments in a completely randomized design. There were 5 replications per treatment and 6 broilers in each replication for 5 weeks. The dietary treatments included a control (Dandelion and Dandelion fermentation was not added), antibiotic (0.05 chlortetracycline was added), 1.0% Dandelion supplementation and 0.5 and 1.0% Dandelion fermented probiotics, respectively. There was no significant difference in final body weight, weight gain, feed intake, and feed conversion ratio of broilers fed diets containing antibiotics, 1.0% Dandelion supplementation and 0.5 and 1.0% Dandelion fermented probiotics. The total cholesterol, HDL and LDL in plasma and meat cholesterol content was not affected by 0.5 and 1.0% Dandelion fermented probiotics and 1.0% Dandelion supplementation (P>0.05). The oleic acid content was significantly increased in 0.5% Dandelion fermented probiotics compared to that of the control (P<0.05). As a result, Dandelion and Dandelion fermented probiotics result in the influence on decreasing cholesterol in blood, particularly when adding probiotics, oleic acid that is the important factor in taste testing of meat increases thus the quality and taste of the chicken meat could be improved with the effect.

Identification and Characterization of Lactobacillus salivarius subsp. salivarius from Korean Feces

  • Bae, Hyoung-Churl
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.89-119
    • /
    • 2004
  • This study was conducted to isolate lactobacilli having probiotic characteristics to be used as health adjuncts with fermented milk products. Acid tolerant strains were selected in Lactobacilli MRS broth adjusted to pH 4.0 from 80 healthy persons (infants, children and adults). And bile tolerant strains were examined in Lactobacilli MRS broth in which 1.0% bile salt was added. By estimation above characteristics, the strains No. 27, which was isolated from adult feces, was selected and identified as Lactobacillus salivarius subsp. salivarius based on carbohydrate fermentation and 16S rDNA sequencing. It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at $37^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by $0.9{\sim}1.0%$ at $37^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced $23{\sim}38%$ of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 hours at $37^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with $15{\sim}25$ mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. Purified ${\alpha}$-galactosidase was obtained by DEAE-Sephadex A-50 ion exchange chromatography, Mono-Q ion exchange chromatography and HPLC column chromatography from L. salivarius subsp. salivarius 27. The specific activity of the purified enzyme was 8,994 units/mg protein, representing an 17.09 folds purification of the original cell crude extract. The molecular weight of enzyme was identified about 53,000 dalton by 12% SDS-PAGE. Optimal temperature and pH for activity of this enzyme were $40^{\circ}C$ and 7.0 respectively. The enzyme was found to be stable between 25 and $50^{\circ}C$. ${\alpha}$-galactosidase activity was lost rapidly below pH 5.0 and above pH 9.0. This enzyme was liberated galactose from melibiose, raffinose, and stachyose, and also the hydrolysis rate of substrate was compound by HPLC. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.

  • PDF

Optimization of Culture Conditions for D-Tagatose Production from D-Galactose by Enterobacter agglomerans. (Entrobacter agglomerans에 의한 D-Galactose로부터 D-Tagatose 생산조건의 최적화)

  • 오덕근;노회진;김상용;노봉수
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.3
    • /
    • pp.250-256
    • /
    • 1998
  • D-Tagatose production from D-galactose was investigated using 35 type strains of American Culture Type Collection (ATCC) and Korean Collection for Type Cultures (KCTC) which have potential to produce D-tagatose. Enterobacter agglomerans ATCC 27987 was selected as a D-tagatose producing strain due to its short fermentation time and high production of D-tagatose. Optimization of the culture conditions for D-tagatose production by E. agglomerans ATCC 27987 was performed. Among various carbon sources, D-galactose was the most effective carbon source for D-tagatose production. As the D-galactose concentration was increased, cell growth and D-tagatose production increased. Effect of nitrogen sources on D-tagatose production was studied. Of inorganic nitrogen sources, ammonium sulfate was effective one for D-tagatose production and yeast extract was the most suitable organic nitrogen nutrient. The concentrations of inorganic compounds such as KH$_2$PO$_4$, K$_2$HPO$_4$, and MgSO$_4$$.$7H$_2$O were also optimized for D-tagatose production. The optimal medium was determined to contain D-galactose of 20 g/l, yeast extract of 5.0 g/l, (NH$_4$)$_2$SO$_4$ of 2.0 g/l, KH$_2$PO$_4$ of 5.0 g/l, K$_2$HPO of 5.0 g/l, and MgSO$_4$$.$7H$_2$O of 5 mg/l. The optimal environmental conditions in a 250-$m\ell$ flask were found to be pH of 6.0, temperature of 30$^{\circ}C$, and agitation speed of 150 rpm. D-tagatose of 0.41 g/l could be obtained in 24 h from 20 g/l D-galactose at the optimal culture condition without induction and cell concentration.

  • PDF

Enhanced Production of Carboxymethylcellulase by a Newly Isolated Marine Microorganism Bacillus atrophaeus LBH-18 Using Rice Bran, a Byproduct from the Rice Processing Industry (미강을 이용한 해양미생물 Bacillus atrophaeus LBH-18 유래의 carboxymethylcellulase 생산의 최적화)

  • Kim, Yi-Joon;Cao, Wa;Lee, Yu-Jeong;Lee, Sang-Un;Jeong, Jeong-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1295-1306
    • /
    • 2012
  • A microorganism producing carboxymethylcellulase (CMCase) was isolated from seawater and identified as Bacillus atrophaeus. This species was designated as B. atrophaeus LBH-18 based on its evolutionary distance and the phylogenetic tree resulting from 16S rDNA sequencing and the neighbor-joining method. The optimal conditions for rice bran (68.1 g/l), peptone (9.1 g/l), and initial pH (7.0) of the medium for cell growth was determined by Design Expert Software based on the response surface method; conditions for production of CMCase were 55.2 g/l, 6.6 g/l, and 7.1, respectively. The optimal temperature for cell growth and the production of CMCase by B. atrophaeus LBH-18 was $30^{\circ}C$. The optimal conditions of agitation speed and aeration rate for cell growth in a 7-l bioreactor were 324 rpm and 0.9 vvm, respectively, whereas those for production of CMCase were 343 rpm and 0.6 vvm, respectively. The optimal inner pressure for cell growth and production of CMCase in a 100-l bioreactor was 0.06 MPa. Maximal production of CMCase under optimal conditions in a 100-l bioreactor was 127.5 U/ml, which was 1.32 times higher than that without an inner pressure. In this study, rice bran was developed as a carbon source for industrial scale production of CMCase by B. atrophaeus LBH-18. Reduced time for the production of CMCase from 7 to 10 days to 3 days by using a bacterial strain with submerged fermentation also resulted in increased productivity of CMCase and a decrease in its production cost.

Effects of Chungkookjang Extract on Growth Hormone Secretion from GH3 Mouse Pituitary Cell and Growth Hormone Receptor Signaling Pathway (GH3 뇌하수체 세포주로부터 성장호르몬의 분비와 성장호르몬 수용체 신호전달에 미치는 청국장 추출물의 효능)

  • Choi, Sun-Il;Kim, Ji-Eun;Hwang, In-Sik;Lee, Hye-Ryun;Lee, Young-Ju;Son, Hong-Joo;Kim, Dong-Seob;Park, Kyu-Min;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1243-1253
    • /
    • 2012
  • The production and secretion of growth hormone (GH) in the anterior pituitary gland can be induced by several natural products to control cell proliferation, differentiation, and migration. To investigate whether Chungkookjang (CKJ) produced by the fermentation process affects GH-related metabolism, the secretion and the response of GH were observed in pituitary cells and GH target cells. Among six CKJs manufactured by different strains of glycine max, only three CKJs, including Daewon (DW), Daepung (DP), and Taegwang (TG), induced GH secretion from GH3 cells at 5.0 mg/ml concentration. There were no significant changes detected in the viability of any of the cells treated with these CKJs. In addition, the increase in GH secretion from the GH3 cells was dependent on the concentration of the three types of CKJs. The proliferation of cell lines, including MG63 and HepG2 cells, that originated from those derived from the GH target organs was significantly activated by treatment with the GH-containing conditional medium (GCM) harvested from the three CKJ-treated GH3 cells, although their induction rate was different from each other. In these cells, p-STAT5 was maximally translocated into the nucleus of MG63 cells 30 min after DW treatment, while it was translocated in HepG2 cells at 60 min. These results suggest that these three types of CKJ could enhance the secretion of GH, as well as the GCM-derived response, in the two target organs.

A Field Survey on Concentration of Odor Compounds in Pig Buildings and Boundary Areas (돈사 내 및 부지경계에서 악취물질 발생 조사 연구)

  • Yoo Yong-Hee;Kim Tae-Il;Jeong Jong-Won;Gwak Jeong-Hun;Choi Hee-Chul;Song Jun-Ik;Yang Chang Bum;Jang Young-Kee;Kim Ho-Jung;Song Ki-Pong
    • Journal of Animal Environmental Science
    • /
    • v.11 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • A field survey was conducted to determine the concentration of odor compounds from pig buildings and that were 20 meters within the boundary area. The odor compounds were measured from large, medium and small farms with enclosed and open housing systems and slurry and sawdust manure fermentation treatment methods. Among the odor compounds investigated, ammonia ($NH_3$) had the highest concentration at 0.9 ${\~}$ 21.0 ppm followed by Hydrogen Sulfide($H_2S$) with a wide variation concentration of 51.9 ${\~}$ 6,712.4 pub, Uethylmercaptan($CH_3SH$) with non-detectable (N. D.) ${\~}$ 12.9 ppb, Dimethylsulphide($(CH_3)_2S$), with N. D. ${\~}$ 5.2 ppb and Dimethyldisulphide($(CH_3)_2S_2$) with N. D. ${\~}$ 2.6 ppb. Considering the prevailing wind direction and air velocity ranging from 0.23 to 0.73 m/s within the boundary area, the odorous matters; $NH_3$, $H_2S$, $CH_3SH$, $(CH_3)_2S_2$ and $(CH_3)_2S$ were 0.2${\~}$4.5 ppm, 0.01 ${\~}$0.06 ppb, N. D. ${\~}$0.009ppb, N. D.${\~}$0.002ppb and N. D. for $(CH_3)_2S$ respectively. These findings suggested that the Odor compounds $(CH_3)_2S_2$ had the lower detection in the boundary area whilst $(CH_3)_2S$ had no detection level within a 20-meter distance only. However, with these results odor compounds from pig buildings has to be further investigated under more controlled environmental factors.

  • PDF

Hydrolysis of Non-digestible Components of Soybean Meal by α-Galactosidase from Bacillus coagulans NRR1207 (Bacillus coagulans NRR1207이 생산하는 α-galactosidase에 의한 대두박 비소화성분의 가수분해)

  • Ra, Seok Han;Renchinkhand, Gereltuya;Park, Min-gil;Kim, Woan-sub;Paik, Seung-Hee;Nam, Myoung Soo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1347-1353
    • /
    • 2018
  • The fermentation of non-digestible soy meal can convert polysaccharides into many compounds that have a wide variety of biological functions. Bacillus strains are capable of hydrolyzing non-digestible saccharides, such as melibiose, raffinose, and stachyose, found in soy meal components. A highly active ${\alpha}$-galactosidase (${\alpha}$-d-galactoside galactohydrolase, EC 3.2.1.22) was isolated from a bacterium in a traditional Korean fermented medicinal herb preparation. The isolate, T2-16, was identified as Bacillus coagulans based on its 16S rRNA sequence and biochemical properties, and the strain was named Bacillus coagulans NRR-1207. When incubated in 10%(w/v) skim milk, Bacillus coagulans NRR1207 caused a decrease in the pH of the culture medium, as well as an increase in titratable acidity and viable cell counts. This strain also showed higher activities of ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, naphthol-AS-BO-phosphohydrolase, and acid phosphatase when compared to other enzymes. It hydrolyzed oligomeric substrates, such as raffinose and stachyose, and liberated galactose, indicating that the Bacillus coagulans NRR1207 ${\alpha}$-galactosidase hydrolyzed the ${\alpha}$-1,6 glycoside linkage. These results suggest that the decreased stachyose and raffinose contents observed in fermented soy meal are due to this ${\alpha}$-galactosidase activity. Bacillus coagulans NRR1207 therefore has potential probiotic activity and could be utilized in feed manufacturing, as well as for hydrolyzing non-digestible soy meal components.

Isolation and Identification of Lactic Acid Bacteria with Probiotic Activities from Kimchi and Their Fermentation Properties in Milk (전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성)

  • Lim, Young-Soon;Kim, JiYoun;Kang, HyeonCheol
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.115-128
    • /
    • 2019
  • Lactic acid bacteria obtained from traditional Kimchi were selected on the basis of their caseinolytic activity and lactose usability and examined for availability as a starter in probiotic activity. Thirty-two strains were selected as lactic acid producing bacteria in BCP agar, and two strains (KC23 and KF26) with more than 90% resistance for both acid and bile salts were selected. The two strains were identified as L. plantarum (KC23) and L. paracasei (KF26) by API 50 CHL system and 16S rRNA sequence analysis. L. plantarum (KC23) was finally selected based on its biochemical characteristics for lactose and raffinose usability. Free tyrosine content increased rapidly in 10% skimmed milk medium, from $24.1{\mu}g/mL$ after 8 h to $43.9{\mu}g/mL$ after 16 h. Additionally, the caseinolytic clear zone of 12 mm of L. plantarum (KC23) was greater than the 9 mm zone of commercial L. acidophilus CSLA. The bacterium exhibited mesophilic growth and yielded $8.9{\times}10^8CFU/mL$ when incubated at $37^{\circ}C$ for 12 h at pH 4.25. Moreover, L. plantarum KC23 exhibited antibacterial activity as it formed a clear zone of 8-13 mm for the 5 pathogens. Adherent activity was 2.23 fold higher than that of LGG. The acidity of 10% skimmed milk fermented for 12 h was 0.74%.