• Title/Summary/Keyword: fermentation media

Search Result 294, Processing Time 0.031 seconds

Studies on the Effect of Biotin Vitamers as a Growth Factors in the L-Glutamic Acid Fermentation (Biotin Vitamer를 Growth Factor로 사용시 L-Glutamic Acid 발효에 미치는 영향)

  • 양한철;김혁일;성하진
    • Microbiology and Biotechnology Letters
    • /
    • v.1 no.2
    • /
    • pp.105-113
    • /
    • 1973
  • The effect of biotin and biotin vitamer on the fermentative production of L-glutamic acid (L-GA) by Brevibacterium flavum was studied. And results were as follows. 1) L-GA production in the medium containing 10% Glucose was the best at the concentration of Biotin 5${\gamma}$/l, Desthiobiotin 5${\gamma}$/1, and 7,8-Diaminopelargonic acid 10${\gamma}$/1, respectively. 2) In the experiment using the Glucose-Acetate mixed media derided into four parts, considerable amounts of cell growth and L-GA production were observed in the mixed medium containing 2% Glucose-Acetate. 3) In the cases of using the media containing methanol, ethanol, ethylacetate, acetic acid (free acetate), Na-acetate:NH$_4$-acetate=2 : 1, the production of L-GA were in decreasing order as follows; Na-Acetate:NH-Acetate=2 : 1> Acetic acid (free acetate)> Ethylacetate> Ethanol> Methanol. 4) When biotin vitamers as growth factors were added in the medium containing Glucose or Acetate as the source of carbon, the substitution effect of Desthiobiotin was almost the same, 7,8-Diaminopelargonic acid 3 or 4 times stronger, and Bisnorbiotin has no substitution effect, compared with Biotin.

  • PDF

Screening for Ginseng-Fermenting Microorganisms Capable of Biotransforming Ginsenosides (Ginsenoside 전환이 가능한 인삼 발효 미생물의 선별)

  • Kim, Hee-Gyu;Kim, Ki-Yeon;Cha, Chang-Jun
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.142-146
    • /
    • 2007
  • Panax ginseng has been drawing world-wide attention since it was used for medicinal purposes and its effects was discovered in scientific manners. However, it is necessary to develope new ginseng products as functional foods to compete with western ginseng. Fermented ginseng could be an excellent solution, where useful probiotics are provided and ginsenosides are specifically transformed to functional forms. In this study, we investigated the growth and ginsenoside biotransformation by 21 Bacillus strains isolated from Chongkukjang and 12 lactic acid bacteria. 2.5% (w/v) and 1% (w/v) of ginseng were used in culture media containing only ginseng powder as a sole nutrient source, and their biotransformation abilities were tested after the growths were checked. All used Bacillus strains and lactic acid bacteria were able to grow well in ginseng powder media at higher levels than $10^{7}\;CFU/ml$. Most of Bacillus strains displayed ginsenoside transformation in a strain-specific manner. Therefore, the results of this study demonstrated that the strains tested in this study could be used as potential starters for the ginseng fermentation.

A New Isolation and Evaluation Method for Marine-Derived Yeast spp. with Potential Applications in Industrial Biotechnology

  • Zaky, Abdelrahman Saleh;Greetham, Darren;Louis, Edward J.;Tucker, Greg A.;Du, Chenyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1891-1907
    • /
    • 2016
  • Yeasts that are present in marine environments have evolved to survive hostile environments that are characterized by high exogenous salt content, high concentrations of inhibitory compounds, and low soluble carbon and nitrogen levels. Therefore, yeasts isolated from marine environments could have interesting characteristics for industrial applications. However, the application of marine yeast in research or industry is currently very limited owing to the lack of a suitable isolation method. Current methods for isolation suffer from fungal interference and/or low number of yeast isolates. In this paper, an efficient and non-laborious isolation method has been developed and successfully isolated large numbers of yeasts without bacterial or fungal growth. The new method includes a three-cycle enrichment step followed by an isolation step and a confirmation step. Using this method, 116 marine yeast strains were isolated from 14 marine samples collected in the UK, Egypt, and the USA. These strains were further evaluated for the utilization of fermentable sugars (glucose, xylose, mannitol, and galactose) using a phenotypic microarray assay. Seventeen strains with higher sugar utilization capacity than the reference terrestrial yeast Saccharomyces cerevisiae NCYC 2592 were selected for identification by sequencing of the ITS and D1/D2 domains. These strains belonged to six species: S. cerevisiae, Candida tropicalis, Candida viswanathii, Wickerhamomyces anomalus, Candida glabrata, and Pichia kudriavzevii. The ability of these strains for improved sugar utilization using seawater-based media was confirmed and, therefore, they could potentially be utilized in fermentations using marine biomass in seawater media, particularly for the production of bioethanol and other biochemical products.

Medium Concentration Influencing Growth of the Entomopathogenic Nematode Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens

  • Yoo, Sun-Kyun;Brown, Ian;Cohen, Nancy;Gaugler, Randy
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.644-648
    • /
    • 2001
  • The biological control potential of entomopathogenic nematodes (EPN) can be enhanced by improved culture efficiency. Optimization of the media is a key factor for improving in vitro mass production of entomopathogenic nematodes. This study reports the effect of medium concentration. The medium is a combination of carbohydrates, lipids, proteins, sats, and growth factors, on the growth of Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus liminescens. The overall optimal medium concentration for nematode recovery, hermaphrodite size, bacterial mass, infective juveniles (IJs) yield, and doubling time was 84 g/l. At this concentration rate, the doubling time of IJs production and the biomass of symbiotic bacteria was 1.6 days and 12.8 g/l, respectively. The maximum yield of $2.4{\times}{10^5}IJs/ml$ was attained within a one-generation cycle (eight days). The yield coefficient was $2.8{\times}{10^6}$ IJs/g medium, and the maximum productivity was $3.1{\times}{10^7}$ IJs per day. Medium concentration affected two independent factors, recovery and hermaphrodite size, which in turn influenced the final yield.

  • PDF

Effect of culture pH and media composition on the ratio of tcicoplanin $A_1$ and $A_2$ biosynthesis

  • Kim, Yun-Jeong;Song, Yun-Seok;No, Yong-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.325-328
    • /
    • 2001
  • Teicoplanin is a glycopeptide antibiotic produced by Actinoplanes teichomyceticus novo sp. A TCC 31121. It is active against Gram-positive bacteria and it is under evaluation for use in man. Teicoplanin mixture in fermentation broth contains major amounts of teicoplanin $A_1$ and $A_2$ and a minor amount tcicoplanin of $A_3$. Commercial teicoplanin product is composed of five major components of very similar polarity, designated T-$A_2$-l, 2, 3, 4 and 5, and the more polor component, designated T -$A_3$. The culture conditions were studied in order that hydrophilic teicoplanin $A_2$ components are more produced but hydrophobic teicoplanin $A_1$ with lower bioactivity are less produced in submerged culture. Effects of culture pH and nutrients on the biosynthes ratio of teicoplanin $A_1$ and $A_2$ were confirmed in flask culture using MOPS buffer system through TLC, bioautography and bioassay. It was elucidated that optimal pH is 7.4 for teicoplanin $A_2$ biosynthesis but is 5.2 for teicoplanin $A_1$ biosynthesis, and that trace elements stimulate $A_2$ production but malt extract stimulate $A_1$production.

  • PDF

Streptomyces griseoplanus SL20209에 의한 Aminopeptidase M 저해제의 생산 조건

  • Ko, Hack-Ryong;Chun, Hyo-Kon;Sung, Nack-Kie;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.3
    • /
    • pp.336-343
    • /
    • 1996
  • Maximum amount of the aminopeptidase M inhibitors produced by Streptomyces griseoplanus SL20209 in 500 ml-Erlenmeyer flask was accumulated after cultivation for 3 days at 28$\circ$C, thereafter the amount of inhibitors decreased slowly with a pH change to alkaline. Arabinose, xylose, mannose and soluble starch were good carbon sources for the production of the inhibitors. On the other hand, glucose was only good for the cell growth but potently inhibited the production of inhibitors. Natural organic nitrogen sources such as soybean meal, fish meal, gluten meal and peanut powder were good for the production of inhibitors, however, soytone, peptone and inorganic nitrogens such as NH$_{4}$C1 and NH$_{4}$NO$_{3}$ were poor. Inclusion of yeast extract (0.5%, w/v) or K$_{2}$HPO$_{4}$ (0.05%) into the production medium increased the production of inhibitors by accelerating cell growth. The production of inhibitors was slightly increased on the medium containing CaCO$_{3}$ (0.3%) and zeolite (0.5%), respectively. Optimal temperature and initial pH range for the production ot inhibitors were determined to be 28$\circ$C and 6.0-7.0, respectively. Employing two improved production media consisting of 3% arabinose or soluble starch, 2.5% soybean meal, 0.5% yeast extract, 0.05% K$_{2}$HP0$_{4}$, 0.1% CaCO$_{3}$ and 0.3% zeolite (pH 6.8), 1.8-fold increase in the amount of inhibitors was achieved, comparing with the basal medium used.

  • PDF

Present Status and Prospects of in vitro Production of Secondary Metabolites from Plant sin China

  • Chen, Xian-Ya;Xu, Zhi-Hong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.40-56
    • /
    • 1995
  • During the past two decades, China has seen her great progress in plant biotechnology. Since the Chinese market of herb medicine is huge, while the plant resources are shrinking, particular emphasis has been placed in plant tissue and cell cultures of medicinal plants, this includes fast propagation, protoplast isolation and regeneration, cell suspension cultures and large scale fermentation. To optimize culture conditions for producing secondary compounds in vitro, various media, additives and elicitors have been tested. Successful examples of large scale culture for the secondary metabolite biosynthesis are quite limited : Lithospermum ery throrhizon and Arnebia euchroma for shikonin derivatives, Panax ginseng, P. notoginseng, P. quinquefolium for saponins, and a few other medicinal plants. Recent development of genetic transformation systems of plant cells offered a new approach to in vitro production of secondary compounds. Hairy root induction and cultures, by using Ri-plasmid, have been reported from a number of medicinal plant species, such as Artemisia annua that produces little artemisinin in normal cultured cells, and from Glycyrrhiza uralensis. In the coming five years, Chinese scientists will continue their work on large scale cell cultures of a few of selected plant species, including Taxus spp. and A. annua, for the production of secondary metabolites with medicinal interests, one or two groups of scientists will be engaged in molecular cloning of the key enzymes in plant secondary metabolism.

  • PDF

Expression and Characterization of Trehalose Biosynthetic Modules in the Adjacent Locus of the Salbostatin Gene Cluster

  • Choeng, Yong-Hoon;Yang, Ji-Yeon;Delcroix, Gaetan;Kim, Yoon-Jung;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1675-1681
    • /
    • 2007
  • The pseudodisaccharide salbostatin, which consists of valienamine linked to 2-amino-1,5-anhydro-2-deoxyglucitol, is a strong trehalase inhibitor. From our Streptomyces albus ATCC 21838 genomic library, we identified thirty-two ORFs in a 37-kb gene cluster. Twenty-one genes are supposed to be a complete set of modules responsible for the salbostatin biosynthesis. Through sequence analysis of the gene cluster, some of the upstream gene products (SalB, SalC, SalD, SalE, and SalF) revealed functional resemblance with trehalose biosynthetic enzymes. On the basis of this rationale, we isolated the five genes (salB, salC, salD, salE, and salF) from the S. albus ATCC 21838 and cloned them into the expression vector pWHM3. We demonstrated the noticeable expression and accumulation of trehalose, using only the five upstream biosynthetic gene cluster of salbostatin, in the transformed Streptomyces lividans TK24. Finally, 490 mg/l trehalose was produced by fermentation of the transformant with sucrosedepleted R2YE media.

Submerged Monoxenic Culture Medium Development for Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens: Protein Sources

  • Cho, Chun-Hwi;Whang, Kyung-Sook;Gaugler, Randy;Yoo, Sun-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.869-873
    • /
    • 2011
  • Most medium formulations for improving culture of entomopathogenic nematodes (EPN) based on protein sources have used enriched media like animal feed such as dried egg yolk, lactalbumin, and liver extract, among other ingredients. Most results, however, showed unstable yields and longer production time. Many of the results do not show the detailed parameters of fermentation. Soy flour, cotton seed flour, corn gluten meal, casein powder, soytone, peptone, casein hydrolysates, and lactalbumin hydrolysate as protein sources were tested to determine the source to support optimal symbiotic bacteria and nematode growth. The protein hydrolysates selected did not improve bacterial cell mass compared with the yeast extract control, but soy flour was the best, showing 75.1% recovery and producing more bacterial cell number ($1.4{\times}10^9$/ml) than all other sources. The highest yield ($1.85{\times}10^5$ IJs/ml), yield coefficient ($1.67{\times}10^6$ IJs/g medium), and productivity ($1.32{\times}10^7$ IJs/l/day) were also achieved at enriched medium with soybean protein.

Production of Galactooligosaccharide by $\beta$-Galactosidase from Kluyveromyces maxianus var lactis OE-20

  • Kim, Jae-Ho;Lee, Dae-Hyung;Lee, Jong-Soo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.337-340
    • /
    • 2001
  • A galactooligosaccharide(GalOS)-producing yeast, OE-20 was selected from forty seven strains of yeast growing in Korean traditional Meju (cooked soybean) and the yeast was tentatively identified as Kluyveromyces maxianus var lactis by its morphology and fermentation profile. A maximum yield of 25.1%(w/w) GalOS, which corresponds to 25.1 g of GalOS per liter, was obtained from the reaction of 100 g per liter of lactose solution at 3$0^{\circ}C$, pH 7.0 for 18 h with an intracellular crude $\beta$-galactosidase. Glucose and galactosidase were found to inhibit GalOS formation. The GalOS that were purified by active carbon and celite 545 column chromatography were supplemented in MRS media and a stimulated growth was observed of some intestinal bacteria. In particular the growth rate of Bifidobacterium infantis in the GalOS containing MRS broth increased up to 12.5% compared to that of the MRS-glucose broth during a 48h incubation period.

  • PDF