• Title/Summary/Keyword: fermentation${\beta}$ cells

Search Result 82, Processing Time 0.024 seconds

Fermentation-Mediated Enhancement of Ginseng's Anti-Allergic Activity against IgE-Mediated Passive Cutaneous Anaphylaxis In Vivo and In Vitro

  • Hwang, Seon-Weon;Sun, Xiao;Han, Jun-Hyuk;Kim, Tae-Yeon;Koppula, Sushruta;Kang, Tae-Bong;Hwang, Jae-Kwan;Lee, Kwang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1626-1634
    • /
    • 2018
  • Ginseng (the root of Panax ginseng Meyer) fermented by Lactobacillus plantarum has been found to attenuate allergic responses in in vitro and in vivo experimental models. Ginseng has been reported to also possess various biological functions including anti-inflammatory activity. The present study was aimed at comparing the anti-allergic effect of ginseng and fermented ginseng extracts on IgE-mediated passive cutaneous anaphylaxis in vitro in a murine cell line and in vivo in mice. Fermented ginseng extract (FPG) showed higher inhibitory effect against in vitro and in vivo allergic responses when compared with ginseng extract (PG). The secretion of ${\beta}$-hexosaminidase and interleukin (IL)-4 from the IgE-DNP-stimulated RBH-2H3 mast cells were significantly (p < 0.05) inhibited by FPG treatment, and this effect was concentration-dependent. Further, MKK4 activation and subsequent JNK phosphorylation were attenuated by FPG treatment. The inhibitory effect of FPG on the in vitro allergic response was verified in vivo against IgE-DNP-induced passive cutaneous anaphylaxis in a mouse model. These data indicated that the fermentation of ginseng with L. plantarum enhanced its anti-allergic effects both in vitro and in vivo. We predict that compositional changes in the ginsenosides caused by the fermentation may contribute to the change in the anti-allergic effects of ginseng. The results of our study highlight the potential of the use of FPG as a potential anti-allergic agent.

The Effect of Fermented Extracts of Korean Dendropanax Morbifera Levéille on Hair Growth (황칠나무 발효 추출물의 육모효과)

  • Park, Tae-Hee;Park, Se-Ho;Lee, Jae-Yeul;Yang, Seun-Ah;Jhee, Kwang-Hwan
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.455-460
    • /
    • 2019
  • In previous studies, we confirmed the effective antimicrobial activity of fermented Dendropanax morbifera leaf/branch extracts with Lactobacillus plantarum ilchiwhangchil 1785 and Lactobacillus plantarum ilchiwhangchil 2020. In this study, we investigated the hair growth effect of D. morbifera leaf/branch extracts fermented with L. plantarum ilchiwhangchil 1785 and L. plantarum ilchiwhangchil 2020 on human hair dermal papilla cells. The growth rate of human hair dermal papilla cells treated with fermented extracts in the range of 1 to $10{\mu}g/ml$ significantly increased in a concentration-dependent manner, without increasing cell death. Double staining studies showed that the growth of cells treated with fermented D. morbifera leaf/branch extracts was more active than that of control cells. Moreover, the cells treated with the fermented D. morbifera leaf/branch extracts exhibited a 18.84% and 23.31% increase in cell mobility, respectively, as compared with that of the untreated cells. High-performance liquid chromatography (HPLC) was used to determine the active agents responsible for hair growth. The results showed that the content of ${\beta}$-sitosterol, which is known to affect hair growth, increased about 10 times in the fermentation process of D. morbifera leaf/branch extracts. Taken together, the findings confirm that fermented Dendropanax morbifera leaf/branch extracts promote hair growth.

Effect of Solid-State Fermented Brown Rice Extracts on 3T3-L1 Adipocyte Differentiation

  • Su Bin Ji;Chae Hun Ra
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.926-933
    • /
    • 2023
  • Aspergillus oryzae KCCM 11372 was used to enhance the production of β-glucan using humidity control strategies. Under conditions of 60% humidity, solid-state fermentation (SSF) increased the yields of enzymes (amylase and protease), fungal biomass (ergosterol), and β-glucan. The maximum concentrations obtained were 14800.58 U/g at 72 h, 1068.14 U/g at 120 h, 1.42 mg/g at 72 h, and 12.0% (w/w) at 72 h, respectively. Moreover, the β-glucan containing fermented brown rice (β-glucan-FBR) extracts at concentrations of 25-300 ㎍/ml was considered noncytotoxic to 3T3-L1 preadipocytes. We then studied the inhibitory effects of the extracts on fat droplet formation in 3T3-L1 cells. As a result, 300 ㎍/ml of β-glucan-FBR extracts showed a high inhibition of 38.88% in lipid accumulation. Further, these extracts inhibited adipogenesis in the 3T3-L1 adipocytes by decreasing the expression of C/EBPα, PPARγ, aP2, and GLUT4 genes.

Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway

  • Soo Jin Park;Joo-Hyun Kim;Sangtaek Oh;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.114-122
    • /
    • 2023
  • A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.

Production and Characterization of Physiological Properties of Carotenoid from a Marine Bacterium Curtobacterium sp. (해양미생물로부터 Carotenoid의 생산 및 그 생리활성)

  • r김종덕;강동수;김민용;최명락;임현수;백승한;서효진;김대현;공재열
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.621-629
    • /
    • 2000
  • A marine bacterium producing carotenoid was isolated from the Yosu coastal area of South Korea, and has been recorded as MCPBK-1. It was identified as Curtobacterium sp.. The optimum conditions of marine carotenoid fermentation from Cutobacterium sp. were pH 7.0, a temperature of $25^{\circ}C$, 4 mM fructose as a carbon source, 0.07% tryptone as a nitrogen source, 0.5 mM $M^{+2}$ ion as a mineral source and $1{\;}\mu\textrm{M}$ of cyanocobalamine as a growth factor in a $7{\;}\ell$ jar-fermentor. 13.0 mg/ml of the marine carotenoid were produced under optimum conditions. The crude marine carotenoid isolated was composed of 5 different compounds, i.e : tunaxanthin(86.6%), diatoxanthin (7.1%), ${\beta}-carotene$ (2.1%), canthaxanthin(1.9%) and cynthiaxanthin (1.9%). Physiological properties including antibacterial activity, cytotoxic effect, antioxidative effect and free radical scavenging activity were characterized with the crude carotenoid, which exhibited no antibacterial activity against E. coli and Lactobacillus bulgaricus, but a strong cytotoxic effect against cancer cells such as HepG2 (Hepatocellular carcinoma, human, ATCC HB-8065) and HeLa (Cervical carcinoma, human, ATCC CCL-2) cells, the ratios of impediment were 86.4% and 39.2%, respectively. This carotenoid, also, expressed a strong antioxidative effect (83%) against CCL-13 (diploid, monotypic hepatocyte, human, ATCC CCL-13) and exhibited free radical scavenging activity (43.4%) when using at a concentration of $50{\;}\mu\textrm{g}/ml$ of the crude carotenoid.

  • PDF

Characteristics of White Soybean Chungkookjang Fermented by Bacillus subtilis D7 (Bacillus subtilis D7에 의하여 발효된 백태 청국장의 특성)

  • Lee, Na-Ri;Park, Sung-Bo;Lee, Sang-Mee;Go, Tae-Hun;Hwang, Dae-Youn;Kim, Dong-Seob;Jeong, Seong-Yun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.529-536
    • /
    • 2013
  • This study was carried out to investigate the characteristics of white soybean Chungkookjang fermented by Bacillus subtilis D7. The highest germination rate was obtained under $25^{\circ}C$ when water was supplied for 4 days at intervals of 2 hr. The total isoflavone content was 971.3 ${\mu}g/g$ before germination and 1023.8 ${\mu}g/g$ after germination. The amino type- and ammonia type-nitrogen contents of Chungkookjang were proportional to the fermentation time. The pH values of all Chungkookjang soybeans increased up to pH 7.8-8.0 during fermentation. The number of viable cells in all Chungkookjang soybeans increased significantly up to 24 hr. The protease activity of all Chungkookjang soybeans increased up to 30-36 hr. The ${\alpha}$- and ${\beta}$-amylase activities of Chungkookjang fermented by B. subtilis D7 were enhanced with increasing fermentation time. Analysis of the effect of Chungkookjang intake on the liver function of mouse showed that the alkaline phosphatase (ALP) activity and the superoxide dismutase (SOD) activity in the Chungkookjang diet group were markedly higher than those in the control group. The asparatate aminotransferase (AST) activity in the germinated soybean Chungkookjang diet group was higher than that in the nongerminated soybean Chungkookjang diet group. Therefore, Chungkookjang soybeans fermented with B. subtilis D7 can be expected to have an increased content of functional components and improved quality characteristics.

Optimization of γ-Aminobutyric Acid (GABA) Production Using Immobilized Lactobacillus plantarum K154 in Submerged Culture of Ceriporia lacerata (Ceriporia lacerata 배양액과 고정화 Lactobacillus plantarum K154를 이용한 감마아미노뷰티르산 생산 최적화)

  • Lee, Eun-Ji;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.438-445
    • /
    • 2015
  • The production of GABA was optimized by co-cultivation of immobilized Lactobacillus plantarum K154 (ILK) with Ceriporia lacerata cultures. The mycelial culture of C. lacerata was performed in a defined medium containing 3% glucose, 3% soybean flour, and 0.15% $MgSO_4$ in a submerged condition for 7 days at $25^{\circ}C$, resulting in the production of 29.7 g/L mycelia, 3.1 g/L exopolysaccharides, 2% (w/w) ${\beta}$-glucan, 68.96 unit/mL protease, and 10.37 unit/mL ${\alpha}$-amylase. ILK in C. lacerata culture showed viable cell counts of $3.13{\time}10^9CFU/mL$ for immobilized cells and $1.48{\time}10^8CFU/mL$ for free cells after 1 day. GABA production in the free and immobilized cells was 9.96 mg/mL and 6.30 mg/mL, respectively, after 7 days. A recycling test of ILK in the co-fermentation was consequently performed five times at $30^{\circ}C$ for 15 days, resulting in the highest production of GABA. GABA could also be efficiently overproduced by co-cultivation with the produced polysaccharides, ${\beta}$-glucan, peptides, and probiotics.

Effect of Botanical Antimicrobial Agent-Citrus Products on the Quality Characteristics during Kimchi Fermentation (식물성 천연항균소재를 첨가한 김치의 숙성 중 품질변화)

  • Cho Sung-Hwan;Lee Seung-Gheol;Park Wan-Soo
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.8-16
    • /
    • 2005
  • To develop natural antimicrobial agents for extending the self-life of Kimchi, the effect of botanical antimicrobial agent-citrus products(BAAC) on microorganisms related to Kimchi spoilage was investigated. The inhibitory effect of BAAC on microorganisms related to Kimchi spoilage was increased according to the concentration of BAAC. Antimicrobial activities of BAAC against microoiganisms related to Kimchi spoilage were remarkably high. The effect of BAAC on the cellular membrane function of microorganisms showed the perturbation of cells in the presence of BAAC. Direct isualization of microbial cells by using both transmission md scanning electron microscope showed microbial cell membrane was destroyed by treating with BAAC. It could be confirmed that BAAC completely inhibit the growth of the test strains. The pH of BAAC-added Kimchi was a little higher than that of the control through the fermentation period. Titratable acidify, vitamin C and viable cells in BAAC-added Kimchi were changed more slowly than those in the control. Sensory evaluation did not show any significant difference between $0.01\%$ BAAC-added Kimchi and the control that showed the best palatabilities during fermentation.

THE EFFECT OF XYLITOL ON THE LACTOSE FERMENTATION OF STREPTOCOCCUS (Streptococcus의 유당분해에 대한 자일리톨의 효과)

  • Shin, Kang-Ho;Choi, Nam-Ki;Kim, Seon-Mi;Oh, Jung-Suk;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.202-211
    • /
    • 2004
  • Xylitol is a 5-carbons carbohydrate, which can be replaced with sucrose for preventing dental caries. To study the effect of xylitol on the fermentation of lactose in bacteria, the important oral bacteria such as Streptococcus(S.) mutans, S. oralis and S. salivarius were studied. The optical density using spectophotometer and the cell concentration were assessed to evaluate the combined effect of lactose and xylitol against the bacteria. Thin layer chromatography and lactose-PTS activity test were performed to evaluate the effect of xylitol on the fermentation of lactose in S. mutans and by ${\beta}-galactosidase$ with the following results. 1. The optical density of Streptococcus mutans culture was not increased for 8 hours-incubation in the media added with lactose and xylitol, but was increased at 24 hours-incubation. The number of viable cells at 8 hours-incubation was smaller in the media containing lactose and xylitol in comparison with lactose only. 2. The optical densities of Streptococcus oralis culture and Streptococcus salivarius culture were not increased for 8 hours-incubation in the media added with lactose and xylitol but were increased at 24 hours-incubation. 3. When Streptococcus mutars was incubated for 8 hours in the media added with lactose and xylitol, the amount of remained lactose was larger compared with the media added with lactose only But all lactose was fermented in both media after 24 hours-incubation. 4. When Streptococcus mutans was incubated in the media added with lactose and xylitol, the activity of lactose-PTS was higher compared with the media added with lactose only. 5. When ${\beta}-galactosidase$ was incubated in the media added with lactose and xylitol, the amount of remained lactose was larger compared with the media added with lactose only. These results indicated that xylitol inhibited the fermentation of lactose by Streptococcus.

  • PDF

Development of Cosmetic Ingredient by Fermented Paprika Juice (파프리카 발효즙의 화장품 소재개발 연구)

  • Bae, Soo Jung;Song, Min Hyeon;Oh, Jung Young;Bae, Jun Tae;Kim, Jin Hwa;Lee, Geun Soo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • In this study, cosmetic materials were developed using a new method of making juice through the fermentation of raw natural materials with microorganisms in order to supplement the advantages and disadvantages of an organic solvent extraction method and a microbial fermentation method. The natural products were selected from two colors (red, green) of paprika known to be rich in various colors and vitamins. The microorganisms used for fermentation were fermented by inoculating paprika with lactic acid bacteria (Lactobacillus plantarum) having sugar-hydrolyzed ability. First, we investigated the changes of physiologically active substances of two kinds of paprika juice and two kinds of fermented paprika juice. Total phenols content and total flavonoids content were higher in the fermented paprika juice than in the paprika juice, and especially in the fermented red paprika juice. Free radical scavenging effect and lipid peroxidation inhibitory effect were also showed an excellent antioxidative effect on paprika fermented juice, among which the effect of red paprika fermentation juice was the highest. The expression of MMP-1 in fermented red paprika juice with high antioxidant activity was inhibited by concentration-dependent expression of MMP-1 mRNA and MMP-1 protein. In the glycation experiments with aging, the anti-glycation effect of fermented paprika juice was highly inhibited by the production of advanced glycation end-products (AGEs), which was closely related to the antioxidant effect. In addition, the activity of senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal), an indicator of cell senescence, was measured using human dermal fibroblast (HDF). The results showed that the cell senescence was inhibited when the cells were treated with fermented paprika juice. In conclusion, fermented paprika juice using lactic acid bacteria showed better antioxidative and anti-aging effects than paprika juice. Among them, fermented red paprika juice has the best antioxidant and anti-aging effect and can be applied as natural new material of antioxidant and anti-aging.