• Title/Summary/Keyword: femtosecond Ti:sapphire laser

Search Result 44, Processing Time 0.027 seconds

Comparison of Fiber-Based Frequency Comb and Ti:Sapphire-Based Frequency Comb

  • Lee, Won-Kyu;Kim, Eok-Bong;Yee, Dae-Su;Suh, Ho-Suhng;Park, Chang-Yong;Yu, Dai-Hyuk;Park, Sang-Eon
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.124-129
    • /
    • 2007
  • For the first time we compare two kinds of optical frequency combs, one of which is based on a Ti:sapphire femtosecond laser and the other is based on a mode-locked erbium-doped fiber laser. The comparison is performed by measuring an optical frequency standard with these two combs simultaneously. The two frequency measurements agree within 1.8 Hz ($3.8{\times}10^{-15}$) with the uncertainty of 17.2 Hz ($3.6{\times}10^{-14}$), from which it can be concluded that the Ti:sapphire-based frequency comb and the fiber-based frequency comb have no systematic discrepancy at this level of uncertainty.

The study of optimal reduced-graphene oxide line patterning by using femtosecond laser pulse (펨토초 레이저 펄스를 이용한 환원된 그래핀의 최소 선폭 패턴 구현에 관한 연구)

  • Jeong, Tae-In;Kim, Seung-Chul
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.157-162
    • /
    • 2020
  • In recent years, laser induced graphene process have been intensively studied for eco-friendly electronic device such as flexible electronics or thin film based energy storage devices because of its simple and effective process. In order to increase the performance and efficiency of an electronic device using such a graphene patterned structure, it is essential to study an optimized laser patterning condition as small as possible linewidth while maintaining the graphene-specific 2-dimensional characteristics. In this study, we analyzed to find the optimal line pattern by using a Ti:sapphire femtosecond laser based photo-thermal reduction process. we tuned intensity and scanning speed of laser spot for generating effective graphene characteristic and minimum thermal effect. As a result, we demonstrated the reduced graphene pattern of 30㎛ in linewidth by using a focused laser beam of 18㎛ in diameter.

Internal modification in transparent materials using plasma formation induced by a femtosecond laser

  • Park, Jung-Kyu;Yoon, Ji-Wook;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • The fabrication of internal diffraction gratings with photoinduced refractive index modification in transparent materials was demonstrated using low-density plasma formation excited by a femtosecond (130 fs) Ti: sapphire laser (${\lambda}_p$=800 nm). The refractive index modifications with diameters ranging from $1{\mu}m$ to $3{\mu}m$ were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than $2.0{\times}10^{13}W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.

  • PDF

Design of a Femtosecond Ti:sapphire Laser for Generation and Temporal Optimization of 0.5-PW Laser Pulses at a 0.1-Hz Repetition Rate

  • Sung, Jae-Hee;Yu, Tae-Jun;Lee, Seong-Ku;Jeong, Tae-Moon;Choi, Il-Woo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • A chirped-pulse amplification Ti:sapphire laser system has been designed using a 10-Hz 100-TW Ti:sapphire laser to generate 0.1-Hz 0.5-PW laser pulses and optimize their temporal qualities such as temporal contrast and pulse duration. A high-energy booster amplifier to be added is expected to produce an energy above 30 J through the parasitic lasing suppression and the efficient amplification. To improve the temporal contrast of the laser pulses, a high-contrast 1-kHz amplifier system is used as a front-end. A grating stretcher which makes the laser pulse have 1-ns duration is used to prevent optical damages due to high pulse energy during amplification. A grating compressor has been designed with group delay analysis to obtain the recompressed pulse duration close to the transform-limited pulse duration. The final laser pulses are expected to have energy above 20 J and duration below 40 fs.

Femtosecond Pulsed Laser Ablation of OLED Shadow Mask Invar Alloy (펨토초 레이저를 이용한 OLED 용 Shadow Mask Invar 합금의 어블레이션)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.50-56
    • /
    • 2007
  • Femtosecond laser ablation of the Invar alloy and hole drilling for a shadow mask are studied. We used a regenerative amplified Ti-sapphire laser with a 1kHz repetition rate, 184fs pulse duration and 785nm wavelength. Femtosecond laser pulse was irradiated on the Invar alloy with air blowing at the condition of various laser peak power. An ablation characteristic of the Invar alloy was appeared non-linear at $125J/cm^2$ of energy fluence. For the application to a shadow mask, the hole drilling of the Invar alloy with the cross section of a trapezoidal shape was investigated. The ablated micro-holes were characterized using an atomic force microscopy(AFM). The optimal condition of hole pattern f3r a shadow mask was $4\;{\mu}m$ z-axis feed rate, 0.2mm/s circular velocity, $26.4{\mu}J$ laser peak power. With the optimal processing condition, the fine circular hole shape without burr and thermal damage was achieved. Using the femtoseocond laser system, it demonstrates excellent tool for the Invar alloy micro-hole drilling without heat effects and poor edge.

AFM-based nanofabrication with Femtosecond pulse laser radiation (원자간력 현미경(AFM)과 펨토초 펄스 레이저를 이용한 나노 형상 가공)

  • Kim Seung-Chul;Kim Seung-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.149-150
    • /
    • 2006
  • We describe a novel method of scanning probe nanofabrication using a AFM(atomic force microscopy) tip with assistance of Femtosecond laser pulses to enhance fabrication capability. Illumination of the AFM tip with ultra-short light pulses induces a strong electric field between the tip and the metal surface, which allows removing metal atoms from the surface by means of field evaporation. Quantum simulation reveals that the field evaporation is triggered even en air when the induced electric field reaches the level of a few volts per angstrom, which is low enough to avoid unwanted thermal damages on most metal surfaces. For experimental validation, a Ti: sapphire Femtosecond pulse laser with 10 fs pulse duration at 800 nm center wavelength was used with a tip coated with gold to fabricate nanostructures on a thin film gold surface. Experimental results demonstrate that fine structures with critical dimensions less than ${\sim}10nm$ can be successfully made with precise control of the repetition rate of Femtosecond laser pulses.

  • PDF

Direct write patterning of ITO film by Femtosecond laser ablations

  • Farson, Dave;Choi, Hae-Woon;Kim, Kwang-Ryul;Hong, Soon-Kug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.583-588
    • /
    • 2005
  • Indium tin oxide (ITO) is a commonly used conducting transparent oxide film (CTO) used in flat panel display applications. Direct write laser ablation is sometimes employed for ITO patterning and it is important that the substrate material and remaining ITO be affected as little as possible by the laser ablation. In this investigation, femtosecond laser ablation of ITO was studied to identify laser processing parameters which cleanly ablated ITO with a minimum of damage to a glass substrate and surrounding ITO. The Ti:Sapphire chirp pulse amplified femtosecond laser used for the experiments had a wavelength of 775nm and produced pulses with a duration of 150fs at a rate of 2 kHz. Ablation was carried out at a sufficiently high panel scanning speed that single ablation spots could be studied. The pulse energy was adjusted to determine feasible spot diameters and depths which could be ablated into the ITO without damaging the glass substrate. Next, ablation of lines without glass damage was also demonstrated. Experiments were also performed with a high repetition rate (100kHz) femtosecond laser.

  • PDF

Fabrication of Breathable Film using Laser Pulses (레이저를 이용한 숨쉬는 필름 가공 기술 연구)

  • Choi, Hun Kook;Sohn, Ik Bu;Noh, Young Chul;Choi, Young Jin;Chang, In Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.409-413
    • /
    • 2013
  • A polypropylene film was ablated using a $CO_2$ laser, Ti-sapphire femtosecond laser, and UV nanosecond laser. For modified atmosphere packaging, polypropylene films were ablated by laser pulse with different pulse energies and measured on an optical microscope. Also, we observed the shelf life of a banana contained within packaging of a breathable zipper bag. As a result, we have demonstrated that the breathable film can efficiently extend the shelf life of respiring foods, particularly fresh fruits and vegetables. The development of breathable film laser microfabrication system will more useful for industrial applications.

Characterization of carrier-envelope-offset frequency of a femtosecond laser stabilized by the direct CEP locking method

  • Luu, Tran Trung;Lee, Jae-Hwan;Kim, Eok-Bong;Park, Chang--Yong;Yu, Tae-Jun;Nam, Chang-Hee
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.241-242
    • /
    • 2009
  • Characterics of carrier-envelope-offset frequency ($f_{ceo}$) of a femtosecond laser stabilized by the direct locking method were investigated using two f-to-2f interferometers. The stability of $f_{ceo}$ was comaparable to that achieved with a conventional PLL method.

  • PDF