• Title/Summary/Keyword: feedstock pretreatment

Search Result 24, Processing Time 0.021 seconds

Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production

  • Nguyen, Minh Thu;Choi, Seung-Phill;Lee, Jin-Won;Lee, Jae-Hwa;Sim, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.161-166
    • /
    • 2009
  • Certain microalgae have been known to use light and various carbon sources to produce carbohydrates, mainly in the form of starch. This is one of the pertinent feedstocks replacing agricultural products for the production of bioethanol by yeast. This study focuses upon dilute acid hydrothermal pretreatments at low cost and high efficiency to compete with current methods, and employs Chlamydomonas reinhardtii UTEX 90 as the feedstock. With dry cells of 5%(w/v), the algal biomass was pretreated with sulfuric acid(1-5%) under temperatures from 100 to $120^{\circ}C$, from 15 to 120 min. As a result, the glucose release from the biomass was maximum at 58%(w/w) after pretreatment with 3% sulfuric acid at $110^{\circ}C$ for 30 min. This method enabled not only starch, but also the hydrolysis of other oligosaccharides in the algal cell in high efficiency. Arrhenius-type of model equation enabled extrapolation of some yields of glucose beyond this range. The pretreated slurry was fermented by yeast, Saccharomyces cerevisiae S288C, resulting in an ethanol yield of 29.2% from algal biomass. This study suggests that the pretreated algal biomass is a suitable feedstock for ethanol production and can have a positive impact on large-scale applied systems.

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.

Pretreatment of Feedstock with High Free Fatty Acid (고농도 유리지방산을 함유한 원료유지의 전처리)

  • Jeong, Gwi-Taek;Park, Don-Hee
    • KSBB Journal
    • /
    • v.21 no.6 s.101
    • /
    • pp.418-421
    • /
    • 2006
  • Fatty acid methyl esters, also referred to as biodiesel, have been determined to have a great deal of potential as substitutes for petro-diesel. In order to enhance productivity in the biodiesel production process, feedstocks were previously recommended to be anhydrous, with a free fatty acid content of less than 0.5%. In this study, the effects of several catalysts, methanol molar ratio, catalyst amount, and reaction time on the reduction of free fatty acid level were studied with a simulated feedstock consisting of 20% oleic acid in rapeseed oil. Ferric sulfate was selected as the best catalyst. Increasing the catalyst amount and methanol molar ratio is very effective in decreasing the acid value of the simulated mixture. Our results may provide useful information with regard to the development of more economic and efficient free fatty acid removal system.

Pretreatment of Feedstock by Ion Exchange Resin Catalyst in Biodiesel process (바이오디젤 공정에서 이온교환수지 촉매에 의한 원료유의 전처리)

  • Lee Soo-Gon;Chae Hee-Jeong;Yoo Jeong-Woo;Kim Eui-Yong
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.68-71
    • /
    • 2006
  • Free fatty acids are not esterified by alkaline catalyst transesterification. They are detrimental to the quality specifications in biodiesel. Therefore, we tried to find solid catalyst to remove free fatty acids in feedstock. Amberlyst 15 resin was selected as the best catalyst, and the moisture content containing in the resin was found to be important for the reaction. The removal efficiency of free fatty acids was gradually decreased from 97% to 70% by ten times reuse of resin. In the transesterificaion reaction by KOH catalyst, soap formation could be decreased by 58.3% using the feedstock pretreated by resin. Consequently, the purity of biodiesel was enhanced about 10%, as compared with the non-treated feedstock.

Effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of carbon nanotubes (탄소나노튜브의 합성수율 증대와 저온 합성에 미치는 기판 전처리의 영향)

  • Shin, Eui-Chul;Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • Carbon nanotubes (CNT) on metal substrates are definitely beneficial because they can maintain robust mechanical stability and high conductivity between CNT and metal interfaces. Here, we report direct growth of CNT on Ni-based superalloy, Inconel 600, using thermal chemical vapor deposition (CVD) with acetylene feedstock in the growth temperature range of $400-725^{\circ}C$. Furthermore, we studied the effect of substrate pretreatment on the growth yield enhancement and growth temperature decrease of CNT on Inconel 600. Activation energy (AE) for CNT growth was estimated from the CNT height change with respect to the growth temperature. The AE values significantly decreased from 205.03 to 24.35 kJ/mol by the pretreatment of thermal oxidation of Inconel substrate at $725^{\circ}C$ under ambient. Higher oxidation temperature tends to have lower activation energy. The results have shown the importance of pretreatment temperature on CNT growth yield and growth temperature decrease.

Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production (당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화)

  • Yoo, Hah-Young;Kim, Sung Bong;Lee, Sang Jun;Lee, Ja Hyun;Suh, Young Joon;Kim, Seung Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

Anaerobic digestate as a nutrient medium for the growth of the green microalga Neochloris oleoabundans

  • Abu Hajar, Husam A.;Guy Riefler, R.;Stuart, Ben J.
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.265-275
    • /
    • 2016
  • In this study, the microalga Neochloris oleoabundans was cultivated in a sustainable manner using diluted anaerobic digestate to produce biomass as a potential biofuel feedstock. Prior to microalgae cultivation, the anaerobic digestate was characterized and several pretreatment methods including hydrogen peroxide treatment, filtration, and supernatant extraction were investigated and their impact on the removal of suspended solids as well as other organic and inorganic matter was evaluated. It was found that the supernatant extraction was the most convenient pretreatment method and was used afterwards to prepare the nutrient media for microalgae cultivation. A bench-scale experiment was conducted using multiple dilutions of the supernatant and filtered anaerobic digestate in 16 mm round glass vials. The results indicated that the highest growth of the microalga N. oleoabundans was achieved with a total nitrogen concentration of 100 mg N/L in the 2.29% diluted supernatant in comparison to the filtered digestate and other dilutions.

A review on thermochemical pretreatment in Lignocellulosic bioethanol production (목질계 바이오에탄올 제조공정에서 열화학적 전처리에 관한 고찰)

  • Ko, Jae-Jung;Yun, Sang-Leen;Kang, Sung-Won;Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • The production of bioethanol, which is one of the alternative fuel, cause the various problem such as agflation in human society. As a substitute for the feedstock, lignocellulosic biomass have a big potential. However, bioethanol production with cellulosic material is not commercialized due to high cost. Thermochemical pretreatment to improve the rate of enzyme hydrolysis and increase the recovery of fermentable sugar, is required in order to achieve the cost down in bioethanol production. In this study, various problems and technologies for pretreatment is introduced. Acid hydrolysis, alkali hydrolysis, steam explosion, organosolv process, ammonia explosion, and wet oxidation pretreatment remove lignin and hemicellulose, and reduce cellulose crystallinity. Optimization of pretreatment process on various sources of lignocellulosic biomass such as softwood, hardwood, and straw should be performed.

  • PDF

Production of Biobutanol by Clostridium beijerinckii from Water Hyacinth (부레옥잠을 이용한 Clostridium beijerinckii의 Biobutanol 생산)

  • Park, Bong-Je;Park, Hye Min;Yun, Hyun Shik
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.79-84
    • /
    • 2016
  • Biofuel has been considered as promising renewable energy to solve various problems that result from increasing usage of fossil fuels since the early 20th century. In terms of chemical and physical properties as fuel, biobutanol has more merits than bioethanol. It could replace gasoline for transportation and industrial demand is increasing significantly. Production of butanol can be achieved by chemical synthesis or by microbial fermentation. The water hyacinth, an aquatic macrophyte, originated from tropical South America but is currently distributed all over the world. Water hyacinth has excellent water purification capacity and it can be utilized as animal feed, organic fertilizer, and biomass feedstock. However, it can cause problems in the rivers and lakes due to its rapid growth and dense mats formation. In this study, the potential of water hyacinth was evaluated as a lignocellulosic biomass feedstock in biobutanol fermentation by using Clostridium beijerinckii. Water hyacinth was converted to water hyacinth hydrolysate medium through pretreatment and saccharification. It was found that productivity of water hyacinth hydrolysate medium on biobutanol production was comparable to general medium.

Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds

  • Kim, Yeong Su;Woo, Duk Gam;Kim, Tae Han
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.470-478
    • /
    • 2020
  • Spent coffee grounds (SCG), the residue after brewing coffee beverage, is a promising biodiesel feedstock due to its high oil contents (15-20%). However, SCG should be pretreated to reduce the high free fatty acid content, which hampers transesterification reaction. To overcome this, we explored a direct transesterification reaction of SCG using ultrasound irradiation and identified the optimal sonication parameters. A high fatty acid methyl ester (FAME) content, up to 97.2%, could be achieved with ultrasound amplitude of 99.2 ㎛, irradiation time of 10 min, and methanol to oil ratio of 7:1 in the presence of potassium hydroxide concentration of 1.25 wt.%. In addition, we demonstrated that ultrasound irradiation is an efficient method to produce biodiesel from untreated SCG in a short time with less energy than the conventional mechanical stirring method. The physical and chemical properties of the SCG biodiesel met the requirements for an alternative fuel to the current commercial biodiesel.