• Title/Summary/Keyword: feedback gain

Search Result 806, Processing Time 0.027 seconds

Throughput Analysis of an ARQ Scheme with Noisy Feedback Channel over Nakagami Fading Channel (나카가미 페이딩 채널에서 궤환채널의 잡음을 고려한 ARQ 기법의 정보전송율 분석)

  • 황재문;박진수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1161-1168
    • /
    • 2002
  • In this paper, the throughput performance of an ARQ scheme is analyzed with noisy feedback channel, in order to exactly analysis for performance of an ARQ scheme. An ARQ mechanism is presented by state diagram, and the throughput of an ARQ scheme is mathematically derived using generation function for a signal flow graph. The channel is modeled by the Nakagami-m fading channel which is distributed over far and wide, and the throughput performance of an ARQ scheme, which is applied in BPSK and BFSK systems, according to feedback gain and fading index m is analyzed through computer simulation. In the results, It is shown conformed that the throughput of an ARQ scheme decreased according to the increase of the noise for feedback channel, but it increased according to the increase of the feedback gain and fading index m. Also, it is shown that the throughput of an ARQ scheme using BPSK system is superior to BFSK system because of the difference of bit error probability between BPSK and BFSK systems.

A Variable-Gain Low-Voltage LNA MMIC Based on Control of Feedback Resistance for Wireless LAN Applications (피드백 저항 제어에 의한 무선랜용 가변이득 저전압구동 저잡음 증폭기 MMIC)

  • Kim Keun Hwan;Yoon Kyung Sik;Hwang In Gab
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1223-1229
    • /
    • 2004
  • A variable-gain low-voltage low noise amplifier MMIC operating at 5GHz frequency band is designed and implemented using the ETRI 0.5$\mu\textrm{m}$ GaAs MESFET library process. This low noise amplifier is designed to have the variable gain for adaptive antenna array combined in HIPERLAN/2. The feedback circuit of a resistor and channel resistance controlled by the gate voltage of enhancement MESFET is proposed for the variable-gain low noise amplifier consisted of cascaded two stages. The fabricated variable gain amplifier exhibits 5.5GHz center frequency, 14.7dB small signal gain, 10.6dB input return loss, 10.7dB output return loss, 14.4dB variable gain, and 2.98dB noise figure at V$\_$DD/=1.5V, V$\_$GGl/=0.4V, and V$\_$GG2/=0.5V. This low noise amplifier also shows-19.7dBm input PldB, -10dBm IIP3, 52.6dB SFDR, and 9.5mW power consumption.

Design and Control of Gain-Flattened Erbium-Doped Fiber Amplifier for WDM Applications

  • Kim, Hyang-Kyun;Park, Seo-Yeon;Lee, Dong-Ho;Park, Chang-Soo
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 1998
  • A simple experimental method to design gain-flattened erbium-doped fiber amplifier is proposed and demonstrated based on the two linear relations between the output power and the pump power, and between the gain and the length of the eribium-doped fiber at the gain flattened state. The spectral gain variation of the eribium-doped fiber amplifiber constructed by this method was less than 0.4 dB over 12 nm (1,545~1,557nm) wavelength region. The gain flatness is also controlled within 0.4 dB over the input power range of -30~-15dBm/ch through the feedback control utilizing the amplified spontaneous emission power in the 1,530 nm region.

  • PDF

The Novel Low-Voltage High-Gain Transresistance Amplifier Design (새로운 구조의 저전압 고이득 트랜스레지스턴스 증폭기 설계)

  • Kim, Byoung-Wook;Bang, Jun-Ho;Cho, Seong-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2257-2261
    • /
    • 2007
  • A new CMOS transresistance amplifier for low-voltage analog integrated circuit design applications is presented. The proposed transresistance amplifier circuit based on common-source and negative feedback topology is compared with other recent reported transresistance amplifier. The proposed transresistance amplifier achieves high transresistance gain, gain-bandwidth with the same input/output impedance and the minimum supply voltage $2V_{DSAT}+V_T$. Hspice simulation using 1.8V TSMC $0.18{\mu}m$ CMOS technology was performed and achieved $59dB{\Omega}$ transresistance gain which is above the maximum about $18dB{\Omega}$ compared to transresistance gain of the reported circuit.

Speed-Sensorless Control of DC Servo Motor Using a High Gain Observer (고이득 관측기를 이용한 센서없는 직류서보전동기의 속도 제어)

  • 김상훈;김낙교
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.10
    • /
    • pp.583-590
    • /
    • 2003
  • This paper deals with speed control of DC servo motor using a high gain obserber. It was designed to estimate rotor speed of DC servo motor and it carries out speed control from the feedback of the estimated speed signal. Also, PI controller was used in speed controller. In order to verify the performance of the high gain observer which is proposed in this paper, it is compared estimate performance of Luenberger Observer and High Gain Observer with the computer simulation. Effectiveness of the proposed high gain observer is proved from the experiment to compare the case with a speed sensor to the case with high gain observer in the speed control of DC servo motor.

A Study on 800 MHz 1W Cartesian Feedback Linearized Power Amplifier for TETRA Signals (TETRA 신호를 위한 800 MHz 대역 1W 급 Cartesian feedback 선형 전력 증폭기에 관한 연구)

  • Oh, Duk-Soo;Kim, Ji-Yeon;Chun, Sang-Hyun;Kim, Jong-Heon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.76-85
    • /
    • 2008
  • In this paper, a 800 MHz 1 W cartesian feedback linearized power amplifier is designed and fabricated for TETRA handset application. For amplification of TETRA signal with 200 kHz narrow bandwidth, amplifier linearization performance of more than 30 dBc is improved through the cartesian feedback linearizer at the offset Sequency of ${\pm}25$ kHz. It is clear that the linearization performance is affected by imbalance of gain and phase between I/Q signals and also DC offset. The linearization performance can be maximized by the compensation of those influences. Cartesian feedback is suitable for a liearization technique of narrow band signal with QAM and another modulation signals, as well.

  • PDF

Effects of Feedback Signals on DTV Repeaters (DTV 중계기의 궤환신호의 영향)

  • Kang, Sang-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1737-1743
    • /
    • 2006
  • OCR(On channel repeater) provides the high frequency reuse efficiency for allocating frequency bands to repeaters because the frequency of input and output signals of OCRs is the same. However the oscillation probability of OCRs is high due to the same input and output frequency. In order to prevent a repeater from oscillating, we must keep the antenna isolation higher than the gain of the repeater with a some margin. In this paper we simulated the effects of the amplitude, phase and time delay of feedback signals (m the characteristics of non-regeneration OCR. Simulation results show that the highest probability of oscillation is occurred when the gain of a repeater is the same value of the isolation. From the simulation results, we know that the phase of feedback signals can be adjusted to reduce the possibility of oscillation if a non-regeneration repeater has a narrow operation bandwidth or a signal bandwidth is narrow. As the time delay increases, the probability of oscillation and the fluctuation of gain over a certain frequency band increase also. The effects of the amplitude and phase of feedback signals on S/N of 8-VSB signal for generation and non-generation repeater were tested. The measured results show that the set-top can receive 8-VSB signal when the received signal power is $17{\sim}18dB$ higher than the noise power. When the isolation is almost same as the gain of the repeater, then the set-top can not receive 8-VSB signals due to the oscillation of the repeater. And the phase of feedback signals affects S/N at the output of the repeater when the isolation is $11.75{\sim}13.75dB$ larger than the gain of the repeater. In this case the set-top can not receive 8-VSB signal of at $48^{\circ}\;and\;347^{\circ}$ of the phase of feedback signals. However the phase of feedback signals can not affect the S/N of 8-VSB signals of the generation repeater because of the demodulation and modulation process of the generation repenter. The set-top can not receive 8-VSB signals when the amplitude of feedback signals is $12.6{\sim}13.6dB$ larger than the wanted signal power at the input port of the repeater. It's because that the amplitude of feedback signals saturates the front end of the repeater.

Design Method of a Parallel Feedforward Compensator for Passivation of Linear Systems (선형 시스템 수동화를 위한 병렬 앞먹임 보상기 설계방법 연구)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.590-596
    • /
    • 2004
  • A passivity-based dynamic output feedback controller design is considered for a finite collection of non-square linear systems. Design of a single controller for a set of plants i.e. simultaneous stabilization is an important issue in the area of robust control design. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation. In contrast to the previous result [1], a technical condition for constructing the parallel feedforward compensator is removed by proposing a new type of the parallel compensator.

Joint Feedback Design for Interference Channel (간섭 채널을 위한 통합 궤환 정보 설계)

  • Jeon, Ki-Jun;Byun, Ilmu;Ko, Byung-Hoon;Rhee, Duho;Lee, Seung-Ro;Kim, Kwang-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.927-936
    • /
    • 2012
  • In this paper, we study joint feedback design for interference channel (IC). We develop a simple iterative algorithm for the joint feedback design to maximize the expected rate when the transmitters use partial channel-state information (CSI) obtained by the feedback link. Also, from the simulation result, we show that the performance gain is obtained compared to the conventional scheme.

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF