• Title/Summary/Keyword: feedback estimator

Search Result 98, Processing Time 0.028 seconds

A Study on Estimator and Controller Design of VSC Hydraulic Unit (VSC 유압유닛의 압력 추정기 및 제어기 설계에 관한 연구)

  • Yoo Seung-Jin;Kim Beom-Joo;Lee Kyo-Il
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.4
    • /
    • pp.7-13
    • /
    • 2005
  • This paper presents modeling and ostimator/controller design for the hydraulic system in Vehicle Stability Control(VSC) system. A nonlinear mathematical model of the VSC hydraulic system is proposed and its accuracy is experimentally verified. A brake pressure estimator is then designed based on the derived mathematical model of VSC hydraulic system. And a disturbance observer, which compensates the estimation error between the brake pressure and the computed brake pressure is also designed to enhance the accuracy of the estimator. The proposed controller has the form of a feedback controller and determines explicitly the on/off ratio of valves' driving PWM signals by means of making use of the simplified mathematical model in the VSC hydraulic system. The performance of the designed controller whose feedback signal is generated by the brake pressure estimator is validated through experimental results.

  • PDF

Design of Multirate Controller using a Current Estimator (Current Estimator를 이용한 멀티레이트 제어기 설계)

  • 황희철;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.190-190
    • /
    • 2000
  • This paper presents a multirate state feedback control (MRSFC) method for systems sensitive to disturbance and noise based on the multirate estimator design using the current estimator. MRSFC updates the controller output slower than the measurement sampling frequency of system output by a lifting factor R=T$\sub$c//T$\sub$s/. The closed-loop MRSFC system is less sensitive to disturbance and noise due to filtering effect than the conventional single-rate control system. The multirate estimator gain is obtained from solving a conventional pole placement problem such that MRSFC has the same spectrum of eigenvalues in the s-plane as the single-rate control. We applied the proposed multirate state feedback controller to a galvanometer servo system. Simulation and experimental results show that settling and tracking performances are improved compared with a conventional single-rate pole placement control (PPC).

  • PDF

A Study on Multirate Control Using a Current Estimator (현재 상태 추정기를 이용한 멀티레이트 제어에 관한 연구)

  • 황희철;정정주;정동실
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.12
    • /
    • pp.1004-1013
    • /
    • 2002
  • A multirate state feedback control (MRSFC) method is proposed for systems sensitive to disturbance and noise based on the multirate estimator design using current estimator. MRSFC updates the controller output slower than the measurement sampling fiequency of system output by a lifting factor $R=T_c/T_s$ The closed-loop MRSFC system is less sensitive to disturbance and noise due to filtering effect than the conventional single-rate control system The multirate estimator gain can be obtained by solving a conventional pole placement problem such that MRSFC has the same spectrum of eigenvalues in the s-plane as the single-rate control. We applied the proposed multirate state feedback controller to a galvanometer servo system Simulation and experimental results show that settling and tracking performances are improved compared with a conventional single-rate pole placement control (PPC).

An Analytical Design of Feedback Regulator and Signal State Estimator in Discrete Linear Systems (이산 선형시스템에서의 피이드백 조정기 및 신호상태 추정기의 해석적 설계)

  • 고명삼
    • 전기의세계
    • /
    • v.21 no.3
    • /
    • pp.19-30
    • /
    • 1972
  • This paper deals with an analytic design of feedback regulator and signal state estimator in discrete linear systems. On the way of developing the deadbeat regulator, some necessary conditions for control policy have been derived, it is proved that the q periods delay in the control causes q periods delay in the point at which deadbeat response occurs. We have derived some relations such that the eigenvalue of system plant can be arbitrarily changed by the characteristics of minor loop compensator which is introduced in feedback path. And also we show that the signal state estimator which estimates the state of given signal sequence must satisfy some conditions. Theorems and conclusions are described with some simplel nontrivial numerical examples and signal state tracking application problems.

  • PDF

An Automatic Time Stepping Algorithm Using a Prior Error Estimator in Structural Dynamics (구조동역학 문제에서 전단계 오차추정치를 이용한 자동시간간격 조정 알고리듬)

  • 조은형;정진태
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1240-1246
    • /
    • 1999
  • A prior error estimator which is solving structural dynamic problems and which is based on the generalized-method, is developed. Since the proposed error estimator is computed with only previous information, the time step size can be adaptively selected without the feedback mechanism. This paper shows that the automatic time stepping algorithm using the error estimator performs an efficient time integration. To verify its efficiency, several examples are numerically investigated.

  • PDF

Output-Feedback Input-Output Linearizing Controller for Nonlinear System Using Backward-Difference State Estimator (후방차분 상태 추정기를 이용한 비선형 계통의 입출력 궤환 선형화 제어기)

  • Kim, Seong-Hwan;Park, Jang-Hyun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.72-78
    • /
    • 2005
  • This paper describes the design of a robust output-feedback controller for a single-input single-output nonlinear dynamical system with a full relative degree. While all the previous research works on the output-feedback control are based on dynamic observers, a new state estimator which uses the past values of the measurable system output is proposed. We name it backward-difference state estimator since the derivatives of the output are estimated simply by backward difference of the present and past values of the output. The disturbance generated due to the error between the estimated and real state variables is compensated using an additional robustifying control law whose gain is tuned adaptively. Overall control system guarantees that the tracking error is asymptotically convergent and that all signals involved are uniformly bounded. Theoretical results are illustrated through a simulation example of inverted pendulum.

  • PDF

Feedback Linearization of an Electro-Hydraulic Velocity Control System and the Implementation of the Digital State Feedback Controller (전기유압 속도제어 시스템의 궤환 선형화 및 이에 대한 디지틀 상태 궤환 제어의 구현)

  • 김영준;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1036-1055
    • /
    • 1992
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the implementation of the digital state feedback controller is studied. The $C^{\infty}$ nonlinear transfomation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed implementation method is easier than the other proposed methods and it is possible to control in real time. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful..

A New Approach of State Estimation based on Particle Filter (파티클 필터에 기반한 새로운 상태 예측 방법)

  • Park Seong-Keun;Ruy Kyung-Jin;Hwang Jae-Phil;Kim Eun-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.245-248
    • /
    • 2006
  • A particle filter is one of the most famous filters. The reason why the particle filter is widely used is that particle deals with the state estimation problem for not only linear models with Gaussian noise but also the non-linear models with non-Gaussian noise and it receives great attention from many engineering fields. In the point of view state estimator, particle filter is feedforward observer. According to the characteristic of dynamic system, the feedforward observer can estimate real state. However, the speed of convergence of feedforward observer between the actual state and the estimated state cannot be satisfied. Since the particle filter is a sort of feedforward observer, the convergence speed of particle filter is slow, and the particle filter cannot estimate actual state like particle collapse problem. In order to overcome the limitation of particle filter as a kind of feedfoward estimator, we propose a new particle filter which has feedback term, called particle filter with feedback. Our proposed method is analyzed theoretically and studied by computer simulation. Comparisons are made with other filtering mehod.

  • PDF

Fuzzy Estimator for Gain Scheduling and its Application to Magnetic Suspension

  • Lee, S.H.;J.T. Lim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.382-382
    • /
    • 2000
  • The external force disturbance is the one of the main causes that deteriorate the performance of the magnetic suspension. Thus, this paper develops a fuzzy estimator for gain scheduling control of magnetic suspension systems suffering from the unknown disturbance. The proposed fuzzy estimator computes the disturbance injected to the plant and the gain scheduled controller generates the corresponding stabilizing control input associated with the estimated disturbance. In the simulation results we confirm the novelty of the proposed control scheme comparing with the other method using a feedback linearization.

  • PDF

Overflow Probabilities in Multi-class Feedback Queues

  • Song, Mi-Jung;Bae, Kyung-Soon;Lee, Ji-Yeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1045-1056
    • /
    • 2007
  • We consider M/M/1 feedback queues with multi-class customers. We assume that different classes of customers have different arrival rates, service rates and feedback probabilities. Using the h-transforms of McDonald(999) we derive an importance sampling estimator for an overflow probability that the total number of customers in the system reaches a high level before emptying.

  • PDF