• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.022 seconds

On-line Fundamental Frequency Tracking Method for Harmonic Signal and Application to ANC (조화신호의 실시간 기본 주파수 추종 방법과 능동소음제어에의 응용)

  • Kim, Sun-Min;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • In this paper, a new indirect feedback active noise control (ANC) scheme based on the fundamental frequency estimation is proposed for systems with a harmonic noise. When reference signals necessary for feedforward ANC configuration is difficult to obtain, the conventional ANC algorithms for multi-tonal noise do not measure the reference signals but generate them with the estimated frequencies. However, the beating phenomena, in which certain frequency components of the noise vanish intermittently, may make the adaptive frequency estimation difficult. The confusion in the estimated frequencies due to the beating phenomena makes the generated reference signals worthless. The proposed algorithm consists of two parts. The first part is a reference generator using the fundamental frequency estimation and the second one is the conventional feedforward control. We propose the fundamental frequency estimation algorithm using decision rules, which is insensitive to the beating phenomena. In addition, the proposed fundamental frequency estimation algorithm has good tracking capability and lower variance of frequency estimation error than that of the conventional cascade ANF method. We are also able to control all interested modes of the noise, even which cannot be estimated by the conventional frequency estimation method because of the poor SIN ratio. We verify the performance of the proposed ANC method through simulations for the measured cabin noise of a passenger ship and the measured time-varying engine booming noise of a passenger vehicle.

  • PDF

Optimal Control for Multiple Serial Sampling Systems (다중시리얼 샘플링 시스템의 최적제어)

  • Yeon Wook Choe
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.771-782
    • /
    • 1991
  • In industrial multivariable plants, it is ofte the case that the plant outputs are measured in similar components not simultaneously but serially. In this paper, the problem of estimating the state vector of the plant based on the data obtained from such a measuring scheme is considered, and a special type of observer(referred to as a $'$multiple serial-sampling$'$ type observer) which renews its internal states whenever a new group of data is obtained is proposed. It is proved that such an observer can be constructed for almost every sampling period if the palnt is observable as a continuous-time multivariable system, and that the poles of the closed-loop system using the multiple serial-sampling type observer consist of the poles of the observer and those of the state feedback system. The behaviors of the observer and the closed-loop system are studied by simulation. The results of simulation indicate that a multiple serial-ampling type observer can estimate the state of the plant more accurately than the ordinary type observers and improve the closed-loop performance, especially, in the existence of measuring noise.ng noise.

  • PDF