• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.026 seconds

Attitude and Hovering Control of Quadrotor Systems using Pole Placement Method (극 배치 기법을 활용한 쿼드로터 시스템의 자세 및 호버링 제어)

  • Park, Ji-Sun;Oh, Sang-Young;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.106-119
    • /
    • 2020
  • In this paper, we propose a control scheme for quadrotor system using a pole placement method. When using a state feedback controller, a lot of trial and error in selection of control gains are often required to improve system performance. In order to relax this complicated process, we analyze the closed-loop system associated with control gains. Then, we present a control gain selection algorithm for control gains using a pole placement method to improve the system performance. The proposed control method is applied to the actual quadrotor system to illustrate the validity of the proposed method.

Digital Implementation of Backing up control of Truck-trailer type Mobile Robots (트럭-트레일러 타입의 모바일로봇을 위한 귀환 제어기 설계)

  • Ku, Ja-Yl;Park, Chang-Woo
    • 전자공학회논문지 IE
    • /
    • v.46 no.2
    • /
    • pp.33-45
    • /
    • 2009
  • In this paper, the implementation of the backward movement control of a truck-trailer type mobile robot using fuzzy model based control scheme considering the practical constraints, computing time-delay and quantization is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period and predicted. The analysis and the design problem considering the computing time-delay become very easy because the proposed controller is syncronized with the sampling time. Also, the stability analysis is made when the quantization exists in the implementation of the fuzzy control architectures and it is shown that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. The experimental results are shown to verify the effectiveness of the proposed scheme.

Control Signal Computation using Wireless Channel (무선 채널을 활용한 제어 신호 컴퓨팅)

  • Jung, Mingyu;Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.986-992
    • /
    • 2021
  • To stabilize closed-loop wireless control systems, the state-of-the-art approach receives the individual sensor measurements at the controller and then sends the computed control signal to the actuators. We propose an over-the-air controller scheme where all sensors attached to the plant transmit scaled sensing signals simultaneously to the actuator, and the actuator then computes the feedback control signal by scaling the received signal. The over-the-air controller essentially adopts the over-the-air computation concept to compute the control signal for closed-loop wireless control systems. In contrast to the state-of-the-art sensor-to-controller and controller-to-actuator communication approach, the over-the-air controller exploits the superposition properties of multiple-access wireless channels to complete the communication and computation of a large number of sensing signals in a single communication resource unit. Therefore, the proposed scheme can obtain significant benefits in terms of low actuation delay and low resource utilization with a simple network architecture that does not require a dedicated controller.

RCGA-Based State Feedback Control for Seesaw Systems (시소 시스템을 위한 RCGA 기반의 상태피드백 제어)

  • Oh, Sea-June;So, Myung-Ok;Jung, Byung-Gun;Ryu, Ki-Tak;Lee, Yun-Hyung;Lee, Sang-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.974-980
    • /
    • 2008
  • Generally. most of the physical systems affected by disturbance or incomplete knowledge are complex and highly nonlinear. To control under these circumstances. many researches are ongoing in modern control theory recently. But the researches need apparatuses. which can verify the controller for being not damaged the real plant. In this paper. therefore. a seesaw system is considered control system to analyze and apply the control theory. A seesaw system consists of a moving cart on the rail and seesaw frame made to demonstrate the effectiveness of the control theory. The system has balancing and positioning problems. and the driving force is applied on the DC motor of cart. but not on the pivot. The purpose of control is to maintain an equilibrium of seesaw frame in spite of an allowable disturbance. Computer simulations are given to illustrate the control performance of the proposed scheme.

Temperature Control of a CSTR using a Nonlinear PID Controller (비선형 PID 제어기를 사용한 CSTR의 온도 제어)

  • Lee, Joo-Yeon;So, Gun-Baek;Lee, Yun-Hyung;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.482-489
    • /
    • 2015
  • CSTR (Continuous Stirred Tank Reactor) which plays a key role in the chemical plants exhibits highly nonlinear behavior as well as time-varying behavior during operation. The control of CSTRs in the whole operating range has been a challenging problem to control engineers. So, a variety of feedback control forms and their tuning methods have been implemented to guarantee the satisfactory performance. This paper presents a scheme of designing a nonlinear PID controller incorporating with a GA (Genetic Algorithm) for the temperature control of a CSTR. The gains of the NPID controller are composed of easily implementable nonlinear functions based on the error and/or the error rate and its parameters are tuned using a GA by minimizing the ITAE (Integral of Absolute Error). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of the proposed method.

Process Improvement in Feedback Adjustment

  • Lee, Jae-June;Kim, Yong-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.395-403
    • /
    • 2012
  • Process adjustment, also called engineering process control(EPC), is applied to maintain process output close to a target value by manipulating controllable variables, but special causes may still make the process deviate from the target and result in significant costs. Thus, it is important to detect and mediate deviations as early as possible. We propose a one-step detection method, the moving search block(MSB), with which the time and type of a special cause can be identified in short periods. A modified control rule that can entertain the effects of the special cause is proposed. A numerical example is presented to evaluate the performance of the proposed scheme.

Dynamic interaction analysis between actively controlled Maglev and bridge (능동제어되는 자기부상열차와 교량의 동적상호작용해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yu, In-Ho;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

FL Deadzone Compensation of a Mobile robot (이동로봇의 퍼지 데드존 보상)

  • Jang, Jun Oh
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.191-202
    • /
    • 2013
  • A control structure that makes possible the integration of a kinematic controller and a fuzzy logic (FL) deadzone compensator for mobile robots is presented. A tuning algorithm is given for the fuzzy logic parameters, so that the deadzone compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded parameter estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The fuzzy logic deadzone compensator is implemented on a mobile robot to show its efficacy.

Sensorless Vector Control of SPMSM using Adaptive Observer (적응관측기를 이용한 SPMSM의 센서리스 벡터제어)

  • Jung, Tack-Gi;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.200-202
    • /
    • 2003
  • This paper is proposed to position and speed control of surface permanent magnet synchronous motor(SPMSM) drive without mechanical sensor. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d-q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

  • PDF

A Study on the Contactless Transportation of Electrostatically-suspended Plates (정전기력에 의해 지지된 판상체의 비접촉반송에 관한 연구)

  • Chung, Il-Jin;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.34-41
    • /
    • 2005
  • There is a strong demand fur the contactless transportation device fur a hard disk and silicon wafer without contaminating and damaging them. To fulfill this requirements, A transportation device fur them has been proposed. But the device needs many of costly displacement sensors positioned along the transportation interval and possesses a very complicated controller and driving scheme. To overcome those kinds of drawback, in this paper, we present a very simple and cost-effective transportation device which only consists of a linear guide, very simple electrostatic suspension system and driving circuit of stepping motor. The principle of stable suspension by relay feedback control, derivation of lateral restoring force, the design of transportation system are described, fellowed by the experimental system. Experimental results show that a 3.5-inch hard disk has been transported with a speed of approximately 20mm/s while being suspended stably at a gap of 0.25mm.