• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.031 seconds

A Nonlinear Speed Control for a PM Synchronous Motor Using a Simple Disturbance Estimation Technique

  • Lee Na-Young;Kim Kyeong-Hwa;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.326-330
    • /
    • 2001
  • A nonlinear speed control for a permanent magnet (PM) synchronous motor using a simple disturbance estimation technique is presented. By using a feedback linearization, scheme, the nonlinear motor model can be linearized. To compensate an undesirable output performance under the mismatch of the system parameters and load conditions the controller parameters will be estimated by using a disturbance observer theory. Since only the two reduced-order observers are used for the parameter estimation, the observer designs are considerably simple and the computational load of the controller for parameter estimation is negligibly small. The proposed control scheme is implemented on a PM synchronous motor using DSP TMS320C31 and the effectiveness is verified through the comparative experiments.

  • PDF

Study on Digital Control of MZMO Dynamic Systems Using I/O Delay (입출력지연을 이용한 다중입출력계의 디지탈제어에 관한 연구)

  • 박양배;김영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.2
    • /
    • pp.63-71
    • /
    • 1985
  • The existing methods of pole assignment were reserved in this paper, a digital control method for MIMO dynamic systems was developed based on pole assignment using I/O delay. The underlined concept of the derived control law was that the poles corresponding to the order of a system can be assigned on the desired positions via output delay, and the poles of the order incrememted by output delay were forced to be placed on zero positions by way of input delay when applied to an actual MIMO system, the present scheme was shown to be more effective than the conventional state feedback scheme with observer in that the former was simpler than the latter, while they performed well.

  • PDF

RCGA-Based Parameter Estimation and Stabilization Control of an Inverted Pendulum System (RCGA를 이용한 도립진자 시스템의 파라미터 추정 및 안정화 제어)

  • Ahn, Jong-Kap;Lee, Yun-Hyung;Yoo, Heui-Han;So, Myung-Ok;Jin, Gang-Gyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.746-752
    • /
    • 2006
  • This paper presents a scheme for the parameter estimation and stabilization of unstable systems, such as inverted pendulum systems. First a stable feedback loop is constructed for an inverted pendulum system and then its parameters are estimated based on input-output data, a real-coded genetic algorithm(RCGA) and the model adjustment technique. Then, a PI-type LQ control scheme is designed based on the estimated model. The performance of the proposed algorithm is demonstrated through a set of simulation and experiment.

Precise Digital Tracking Control for Multi-Axis Servo System (다축 서보시스템의 정밀 추적제어)

  • Shin, Doo-Jin;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.591-598
    • /
    • 2000
  • In this thesis, a digital tracking controller is proposed for multi-axis position control system. Tracking and contouring error exist when the machine tool moves along a trajectory in multi-axis system. The proposed scheme enhances the tracking and contouring performance by reducing the errors. Also, an optimal tracking controller reduces the tracking error by the state feedback and the feedforward compensator reduces the effects of a nonlinear disturbance such as friction or dead zone. The proposed control scheme reduces the contour error which occurred when the tool tracks the reference trajectory. Finally, the performance of the proposed controller is exemplified by some simulations and by applying the real XY servo system.

  • PDF

Drug Treatment Protocol for HIV Infected Patients Using State Feedback Integral Control Technique (상태궤환 적분제어기법을 이용한 HIV 감염 환자에 대한 약물 치료기법)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1454-1459
    • /
    • 2015
  • In this paper, a drug treatment protocol is proposed for an HIV infection model that explicitly includes the concentration of healthy T cells, infected T cells, and HIV. Since real parameters of HIV infection model differ from patient to patient, most drug treatment protocols are not able to achieve the treatment goal in the presence of modelling errors. Recently, based on the nonlinear robust control theory, a robust treatment protocol has been proposed that deals with parameter uncertainties. Although the developed scheme is inherently complex, it cannot be applied to the case where all parameters are unknown. In this paper, we propose a new drug treatment protocol that is much simpler than the previous one but can achieve the treatment goal even when all model parameters are unknown. The simulation results verify that the substantial improvement in the performance can be achieved by the proposed scheme.

Outage Performance of Selective Dual-Hop MIMO Relaying with OSTBC and Transmit Antenna Selection in Rayleigh Fading Channels

  • Lee, In-Ho;Choi, Hyun-Ho;Lee, Howon
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1071-1088
    • /
    • 2017
  • For dual-hop multiple-input multiple-output (MIMO) decode-and-forward relaying systems, we propose a selective relaying scheme that uses orthogonal space-time block code (OSTBC) and transmit antenna selection with maximal-ratio combining (TAS/MRC) or vice versa at the first and second hops, respectively. The aim is to achieve an asymptotically identical performance to the dual-hop relaying system with only TAS/MRC, while requiring lower feedback overhead. In particular, we give the selection criteria based on the antenna configurations and the average channel powers for the first and second hops, assuming Rayleigh fading channels. Also, the numerical results are shown for the outage performance comparison between the dual-hop DF relaying systems with the proposed scheme, only TAS/MRC, and only OSTBC.

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

A Study on Performance Analysis of Articulated Robot System for Smart Factory Based on Monitoring Simulator

  • Kim, Hee Jin;Kim, Dong-ho;Jung, Kum-jun;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.889-896
    • /
    • 2020
  • We describe a new approach to the analyze the control performance of robotic manipulator based on the monitoring system. The structure of monitoring simulator is consist of seven modes such as control state mode, coordinate mode, input/output mode, program mode, parameters mode, and track mode. The applied control algorithme consists of an time varying feed-forward and feedback controller. The proposed scheme is simple in structure, fast in computation, and suitable for real-time implimemtation. Moreover, this scheme does not require any accurate dynamic modeling and values of parameters. Performance of the proposed monitoring system is illustrated by simulation and experiment for robot manipulator with six degrees of freedom.

Resource Allocation and Transmission Control Scheme using Window-Based Dynamic Bandwidth Smoothing Method (윈도우 기반 동적 대역폭 평활화 방식을 이용한 자원 할당 및 전송 제어 기법)

  • Kim Hyoung-Jin;Go Sung-Hyun;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.943-950
    • /
    • 2005
  • Recently, many of researches on stream transmission for satisfying each of different real-time transmission condition of the multimedia data that demands various service quality through high-speed networks have been studied actively. In this paper, we design a scheme that discriminately reserves the network resources for the transmission of each multimedia application and propose a bandwidth allocation scheme for improving the utilization ratio of free resources. And we also propose a pipelining scheme for providing flexible real-time transmission. The proposed schemes can be used to support a real-time transmission by applying feedback transmission control method based on receiving buffer for guaranteeing the synchronization conditions requested by the multimedia data. Moreover, we propose a transmission control scheme that can take the amount of network resources down to the minimum amount within the range of permissible error-range under the guarantee with no quality degradation simultaneously when the bottleneck is caused by the network congestion. Finally, we propose a dynamic bandwidth smoothing scheme that can smooth the maximum bandwidth to the demand of each video steam for giving continuous transmission to the delay sensitive video steam between senders and receivers.

Motion Control of Robot Manipulators using Visual Feedback (비젼을 이용한 로봇 매니퓰레이터의 자세제어)

  • Jie Min Seok;Lee Young Chan;Kim Chin Su;Lee Kang Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.13-20
    • /
    • 2006
  • In this paper, we propose a motion control scheme of robot manipulators based on visual feedback under camera-in-hand configuration. The desired joint velocity and acceleration for motion control is made by the feature-based visual data in the outer loop. The control input for tracking feature points on the image plane uses robot kinematics dynamic. The proposed control input consists of the image feature and the joint velocity error to achieve robustness to the parametric uncertainty. The stability of the closed-loop system is proved by Lyapunov approach. Computer simulations and experiments on a two degree of freedom manipulator with 5 links are presented to illustrate the performance of proposed control system.