• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.031 seconds

Sensorless Passivity Based Control of a DC Motor via a Solar Powered Sepic Converter-Full Bridge Combination

  • Linares-Flores, Jesus;Sira-Ramirez, Hebertt;Cuevas-Lopez, Edel F.;Contreras-Ordaz, Marco A.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.743-750
    • /
    • 2011
  • This article deals with the sensor-less control of a DC Motor via a SEPIC Converter-Full Bridge combination powered through solar panels. We simultaneously regulate, both, the output voltage of the SEPIC-converter to a value larger than the solar panel output voltage, and the shaft angular velocity, in any of the turning senses, so that it tracks a pre-specified constant reference. The main result of our proposed control scheme is an efficient linear controller obtained via Lyapunov. This controller is based on measurements of the converter currents and voltages, and the DC motor armature current. The control law is derived using an exact stabilization error dynamics model, from which a static linear passive feedback control law is derived. All values of the constant references are parameterized in terms of the equilibrium point of the multivariable system: the SEPIC converter desired output voltage, the solar panel output voltage at its Maximun Power Point (MPP), and the DC motor desired constant angular velocity. The switched control realization of the designed average continuous feedback control law is accomplished by means of a, discrete-valued, Pulse Width Modulation (PWM). Experimental results are presented demonstrating the viability of our proposal.

MPC-based Two-stage Rolling Power Dispatch Approach for Wind-integrated Power System

  • Zhai, Junyi;Zhou, Ming;Dong, Shengxiao;Li, Gengyin;Ren, Jianwen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.648-658
    • /
    • 2018
  • Regarding the fact that wind power forecast accuracy is gradually improved as time is approaching, this paper proposes a two-stage rolling dispatch approach based on model predictive control (MPC), which contains an intra-day rolling optimal scheme and a real-time rolling base point tracing scheme. The scheduled output of the intra-day rolling scheme is set as the reference output, and the real-time rolling scheme is based on MPC which includes the leading rolling optimization and lagging feedback correction strategy. On the basis of the latest measured thermal unit output feedback, the closed-loop optimization is formed to correct the power deviation timely, making the unit output smoother, thus reducing the costs of power adjustment and promoting wind power accommodation. We adopt chance constraint to describe forecasts uncertainty. Then for reflecting the increasing prediction precision as well as the power dispatcher's rising expected satisfaction degree with reliable system operation, we set the confidence level of reserve constraints at different timescales as the incremental vector. The expectation of up/down reserve shortage is proposed to assess the adequacy of the upward/downward reserve. The studies executed on the modified IEEE RTS system demonstrate the effectiveness of the proposed approach.

ADAPTIVE FDI FOR AUTOMOTIVE ENGINE AIR PATH AND ROBUSTNESS ASSESSMENT UNDER CLOSED-LOOP CONTROL

  • Sangha, M.S.;Yu, D.L.;Gomm, J.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.637-650
    • /
    • 2007
  • A new on-line fault detection and isolation(FDI) scheme has been proposed for engines using an adaptive neural network classifier; this paper investigates the robustness of this scheme by evaluating in a wide range of operational modes. The neural classifier is made adaptive to cope with the significant parameter uncertainty, disturbances, and environmental changes. The developed scheme is capable of diagnosing faults in the on-line mode and can be directly implemented in an on-board diagnosis system(hardware). The robustness of the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes, including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all changes occurring simultaneously. The evaluations are performed using a mean value engine model(MVEM), which is a widely used benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed method for various uncertainties and disturbances.

State Feedback Control for Model Matching Inclusion of Asynchronous Sequential Machines with Model Uncertainty (모델 불확실성을 가진 비동기 순차 머신의 모델 정합 포함을 위한 상태 피드백 제어)

  • Yang, Jung-Min;Park, Yong-Kuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.7-14
    • /
    • 2010
  • Stable-state behaviors of asynchronous sequential machines represented as finite state machines can be corrected by feedback control schemes. In this paper, we propose a state feedback control scheme for input/state asynchronous machines with uncertain transitions. The considered asynchronous machine is deterministic, but its state transition function is partially known due to model uncertainty or inner logic errors. The control objective is to compensate the behavior of the closed-loop system so that it matches a sub-behavior of a prescribed model despite uncertain transitions. Furthermore, during the execution of corrective action, the controller reflects the exact knowledge of transitions into the next step, i.e., the range of the behavior of the closed-loop system can be enlarged through learning. The design procedure for the proposed controller is described in a case study.

LMI Based L2 Robust Stability Analysis and Design of Fuzzy Feedback Linearization Control Systems (LMI를 기반으로 한 퍼지 피드백 선형화 제어 시스템의 L2 강인 안정성 해석)

  • Hyun, Chang-Ho;Park, Chang-Woo;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.582-589
    • /
    • 2003
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included Un the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

A study on single phase UPS inverter control with PDFF method (PDFF 제어기법을 이용한 단상 UPS 인버터 전압, 전류제어에 관한 연구)

  • Oh B. W.;Lee S. Y.;Lee Y. K.;Jeon Y. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.799-802
    • /
    • 2004
  • There are many methods in controlling inverter's voltage and currents. most of all, PI control method is a general method. PI control has some merits. But, PI control has zero effect. So, steady-state response errors always exist by the zero effect. For removing the steady-state error, This paper presents the modeling, design and analysis of the double loop feedback control scheme. and computing the value of parameters and applying In the single-phase full bridge inverter for comparison and analysis between the PI control and PDFF control. The system model is employed to examine the dynamics of power circuit and select appropriate feedback variables for stable operation of the closed-loop UPS inverter system. It analyzes and proves the output characteristic of inverter system with the PDFF control.

  • PDF

Pricing in ATM network with feedback

  • Kim, Hyoun-Jong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.186-189
    • /
    • 1996
  • In most of the recent research literature, network performance is expressed in terms of network engineering measures such as delay or loss. These performance measures are important to network owners and operators, but it is believed that user preferences should be the primary consideration which drives the resource allocation scheme. A network is only as valuable as its users perceive it to be. Therefore, it is advocated that the users themselves determine relative traffic priorities. This paper describes the role of feedback in network resource allocation, which could be part of a user-oriented framework for network operation and control. Feedback mechanism can also be used to improve the two types of efficiency in the network; network efficiency and economic efficiency.

  • PDF

Static VAR Compensator-based Feedback Control Implementation for Self-Excited Induction Generator Terminal Voltage Regulation Driven by Variable-Speed Prime Mover

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.65-76
    • /
    • 2004
  • In this paper, the steady-state analysis of the three-phase self-excited induction generator (SEIG) driven by a variable-speed prime mover (VSPM) such as a wind turbine is presented. The steady-state torque-speed characteristics of the VSPM are considered with the three-phase SEIG equivalent circuit for evaluating the operating performances due to the inductive load variations. Furthermore, a PI closed-loop feedback voltage regulation scheme based on the static VAR compensator (SVC) for the three-phase SEIG driven by the VSPM is designed and considered for the wind power generation conditioner. The simulation and experimental results prove the practical effectiveness of the additional SVC with the PI controller-based feedback loop in terms of fast response and high performances.

STABILIZATION OF 2D g-NAVIER-STOKES EQUATIONS

  • Nguyen, Viet Tuan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.819-839
    • /
    • 2019
  • We study the stabilization of 2D g-Navier-Stokes equations in bounded domains with no-slip boundary conditions. First, we stabilize an unstable stationary solution by using finite-dimensional feedback controls, where the designed feedback control scheme is based on the finite number of determining parameters such as determining Fourier modes or volume elements. Second, we stabilize the long-time behavior of solutions to 2D g-Navier-Stokes equations under action of fast oscillating-in-time external forces by showing that in this case there exists a unique time-periodic solution and every solution tends to this periodic solution as time goes to infinity.

A New Hardening Technique Against Radiation Faults in Asynchronous Digital Circuits Using Double Modular Redundancy (이중화 구조를 이용한 비동기 디지털 시스템의 방사선 고장 극복)

  • Kwak, Seong Woo;Yang, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.625-630
    • /
    • 2014
  • Asynchronous digital circuits working in military and space environments are often subject to the adverse effects of radiation faults. In this paper, we propose a new hardening technique against radiation faults. The considered digital system has the structure of DMR (Double Modular Redundancy), in which two sub-systems conduct the same work simultaneously. Based on the output feedback, the proposed scheme diagnoses occurrences of radiation faults and realizes immediate recovery to the normal behavior by overriding parts of memory bits of the faulty sub-system. As a case study, the proposed control scheme is applied to an asynchronous dual ring counter implemented in VHDL code.