• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.031 seconds

A Study on the Adaptive Roll Control Scheme for the Top Attack Smart Projectile (상부공격 지능탄의 회전각 적응제어 기법 연구)

  • 홍종태;정수경;최상경
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • An Adaptive Positive Position Feedback method is presented for controlling the roll of the supersonic smart projectile. The proposed strategy combines the attractive attributes of Positive Position Feedback(PPF) of Goh and Caughey, and Lyapunov stability theorem. The parameters of Adaptive-PFF controller are adjusted in an adaptive mauler in order to follow the performance of an optimal reference model. In this way, optimal damping and zero steady-state errors can be achieved even in the presence of uncertain or changing plant parameters. The performance obtained with the Adaptive-PPF algorithm is compared with conventional PPF control algorithm. The results obtained emphasize the potential of Adaptive-PPF algorithm as an efficient means for controlling plants such as supersonic flight systems with uncertainties in real time.

  • PDF

Nonlinear Control of Active Suspensions using RBF Network with Asymmetric Hydraulic Cylinder (비대칭형 유압 실린더를 사용한 능동 현가 시스템의 RBF 신경회로망을 이용한 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • This paper suggests a suboptimal control scheme of an active suspension system with an asymmetric hydraulic cylinder. In this paper a quarter car model including a nonlinear actuator dynamics is used. A feedback linearization technique is applied to obtain a linear model. An LQ regulator is designed with the linear model to keep robustness against sprung mass variation. The gain of the LQ regulator which depends on the damping coefficient of the damper is calculated by using an RBF neural network for real time application. The improvement achieved with our design is illustrated through comparative simulations.

  • PDF

Design of a real time adaptive controller for industrial robot using TMS320C31 chip (TMS320C31칩을 사용한 산엽용 로보트의 실시간 적응 제어기 설계)

  • Han, S.H.;Kim, Y.T.;Lee, M.H.;Kim, S.K.;Kim, J.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.94-104
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manpulators to achieve accurate trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed contorl scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Morever, this scheme does not require an accurate dynamic modeling nor values of manpipulator parameters and payload. Performance of the adaptive controller is illustated by simulation and experimental results for a SCARA robot.

  • PDF

Lyapunov Based Stability Analysis and Design of A Robust High-Gain Observer (강인한 고이득 관측기 설계 및 안정성 해석)

  • Yu, Sung-Hoon;Hyun, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.8-15
    • /
    • 2010
  • This paper proposes a robust high-gain observer design scheme for nonlinear systems and its stability is analyzed based on Lyapunov theory. It is assumed that their states are unmeasurable. The proposed high-gain observer has the integrator of the estimation error in dynamics. It improves the performance of high-gain observers and makes the proposed observer robust to noisy measurements, uncertainties and peaking phenomenon as well. Its stability is analyzed by the Lyapunov approach. In order to verify the effectiveness of the proposed scheme, it is applied to output feedback controllers and some comparative simulation result with the existed observer based output feedback controllers and state feedback controllers is given.

Linear Quadratic Control with Pole Placement for an Automotive Active Suspension System (극점배치기능을 갖는 LQ제어기 설계 및 자동차 능동 현가장치 제어에의 응용)

  • 최재원;서영봉;유완석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.513-517
    • /
    • 1995
  • In this paper, a relation of matrix Q in cost function to distances between the closed-loop and open-loop poles of a multi input controllable systems is studied. Futhmore, the state feedback gain with exact desired eigenvalues in the LQR is computed. The proposed scheme is applied to designing automotive active suspension control system for a half-car model and its performance is compared with the existing LQR control system design methodology.

  • PDF

Some Integral Equalities Related to Laplace Transformable Function

  • Kwon, Byung-Moon;Kwon, Oh-Kyu;Lee, Myung-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.1-151
    • /
    • 2001
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of Laplace transformable function. Using the definition of Laplace transform, it is shown that time-domain integral equalities have to be satisfied by the function, and those can be applied to understanding of the fundamental limitations of the control system represented by the transfer function, which has been Laplace transform. In the unity-feedback control scheme, another integral equality is also derived on the output response of the system with open-loop poles and zeros located in the convergence region.

  • PDF

On Fair Window Control For TCP With ECN Using Congestion Pricing

  • Hai Ngo Dong;Phan Vu Ngoc
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.189-192
    • /
    • 2004
  • This paper focuses on a TCP window-based flow control mechanism with Explicit Congestion Notification (ECN). We investigate the fundamental problem of achieving a fair window control for TCP, which cooperates with ECN. This is done by using feedback congestion pricing as a means of estimating the state of bottleneck router. The problem is solved by achieving network optimal performance, which maximize the total user utilities. We then look at the simulation of such scheme.

  • PDF

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

A Study on Improvement of PWR Steam Generator Water Level Control at Low Power Operation (저출력시 원전 증기발생기 수위제어 개선 연구)

  • Yun, Jae-Hee;Han, Jai-Bok;Joon Lyou
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.420-424
    • /
    • 1994
  • This paper presents an improved water level control scheme for Pressurized Water Reactor(PWR) Steam Generator(S/G) at the low power operation and transient states. To reduce fluctuations of the water level by the swell and shrink phenomena, the scheme adds feedforward terms considering S/G pressure and the feedwater temperature into the conventional proportional-integral feedback controller. The simulation results using the Compact Nuclear Simulator show that smaller level errors and much faster settling time than those of the conventional scheme can be obtained. The proposed algorithm is easily implementable and has a potential for the real applications.

  • PDF

Decentralized Model Reference Adaptive Control of a Class of Interconnected Continuous Systems (일련의 상호연결된 연속시간 시스템의 비집중 모델기준 적응제어)

  • Lyou, Joon;Kim, Sung-Soo;Yim, In-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.930-935
    • /
    • 1987
  • This paper presents a decentralized model reference adaptive control scheme for an interconnected continuous linear system composed of a number of single input single output subsystems. The scheme can treat the unknown strengh of interconnections as well as the uncertainty of subsystems. The scheme automatically adjusts the local feedback gains so that the output of each subsystem exponetially tracks that of the reference model.

  • PDF