• Title/Summary/Keyword: feedback control scheme

Search Result 672, Processing Time 0.023 seconds

$H_{\infty}$ Controller Design for Electromagnetic Suspension System using LMIs (LMI를 이용한 자기부상 시스템의 $H_{\infty}$ 제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Kim, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.280-283
    • /
    • 2000
  • In this paper, a fault tolerant control problem is considered for a class of nonlinear system formulated in a gain scheduling form with LMI-based H-inf control technique Key benefits of this proposed scheme are demonstrated in the simulation of an electromagnetic suspension system with actuator and/or sensor failures, and the method is compared with the convensional state-feedback and output-feedback controller. It is clearly observed that the proposed control scheme shows an improved output performance in comparision with convensional methods.

  • PDF

Simultaneous optical ignition and spectroscopy of a two-phase spray flame for feedback control System (이상상태 분무 화염에서의 레이저 점화 및 분광 측정을 통한 피드백 제어 연구)

  • Lee, Seok Hwan;Kim, Hyunwoo;Do, Hyungrok;Yoh, Jack J.
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.215-218
    • /
    • 2015
  • Simultaneous laser ignition and spectroscopy is a scheme that enables rapid determination of the local equivalence ratio and condensed fuel concentration during a reaction in a two phase spray flame. We have conducted quantitative analysis of the LIBS signals according to the equivalence ratio, droplet size, droplet number density and droplet concentration as a part of novel feedback control strategy proposed for flame ignition and stabilization with simultaneous in situ combustion flow diagnostics. This is a desirable scheme since such real time information onboard an engine for instance can be constantly monitored and fed back to the control loop to enhance the mixing process and minimize emissions of unwanted species and potential combustion instability.

  • PDF

Robust Feedback Control Design for a Three-phase Grid-connected Inverter in Distributed Generation System

  • Lai, Ngoc Bao;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.491-492
    • /
    • 2016
  • This paper presents a robust feedback control design to mitigate the effect of grid voltage disturbances for three-phase grid-connected inverters in distributed generation systems. The proposed strategy consists of two major design steps. First, the controller is synthesized using the internal model principle to achieve a good reference tracking and disturbance rejection performance. Then, the feedback gain is systematically obtained by solving the linear matrix inequality conditions which are directly derived from the stability criteria. The main contribution of this paper is that the complexity of control structure can be substantially reduced and transient response is improved as compared with the existing robust control design methods. The simulation results are given to prove the validity of the proposed control scheme.

  • PDF

Digital State Feedback Control for a Single/Parallel Module Buck Converter Using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.31-33
    • /
    • 2007
  • In this paper, a simple digital control scheme for the single/parallel module buck converters is proposed using a digital state feedback control method. The discrete state feedback controller structure for the robust tracking control is derived by using the error state. The proposed control system can precisely achieve the interleaved current sharing and the output regulation, and can achieve the systematical controller design for a given converter specification using the pole placement technique. For a design example, the single module buck converter is simulated using the MATLAB Simulink software and two 100W parallel module buck converters with a TMS320F2812 DSP is implemented.

  • PDF

Nonlinear Input-Output Feedback Linearizing Control of a Single Machine Infinite Bus Power System (1기 무한모선 전력계통의 배선형 입출력 되먹임 선형화 제어)

  • Kim, Dong-Gun;Kim, Seok-Kyoon;Yoon, Tae-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Many nonlinear controllers for the power system are based on nonlinear models involving the power angle as an element of the state, and therefore the reference value for the power angle is needed. As this reference value is not generally available, it is difficult to apply such nonlinear control methods in practice. To deal with this problem, we present an input-output feedback linearizing control scheme by selecting the output as a combination of the squared voltage and the relative frequency. It is shown that the internal dynamics are locally stable with controllable damping, and that the frequency remains bounded for all time. Simulations illustrate the effectiveness of the proposed method.

An Instrument Fault Diagnosis Scheme for Direct Torque Controlled Induction Motor Driven Servo Systems (직접토크제어 유도전동기 구동 서보시스템을 위한 장치고장 진단 기법)

  • Lee, Kee-Sang;Ryu , Ji-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.241-251
    • /
    • 2002
  • The effect of sensor faults in direct torque control(DTC) based induction motor drives is analyzed and a new Instrument fault detection isolation scheme(IFDIS) is proposed. The proposed IFDIS, which operated in real-time, detects and isolates the incipient fault(s) of speed sensor and current sensors that provide the feedback information. The scheme consists of an adaptive gain scheduling observer as a residual generator and a special sequential test logic unit. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current and rotor speed that are useful for fault detection. With the test logic, the IFDIS has the functionality of fault isolation that only multiple estimator based IFDIS schemes can have. Simulation results for various type of sensor faults show the detection and isolation performance of the IFDIS and the applicability of this scheme to fault tolerant control system design.

A DC-Link Voltage Control Scheme for 4-Level Inverter at Low Modulation Index (4-레벨 인버터를 위한 저변조지수 영역의 DC-링크 전압 제어기법)

  • 송종환
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.325-329
    • /
    • 2000
  • An effective Carrier-Based PWM scheme that enables the instantaneous quality of each branch point voltage of a diode clamped 4-level inverter to be reduced at a low modulation index is described. This scheme presents a computed zero sequence voltage of PWM by the feedback of both DC-link voltages and load currents. The proposed PWM scheme enables to increase the controllable region of DC-link voltage and makes it possible to operate with small DC-link capacitors. The validity of the proposed PWM scheme is verified by simulation results.

  • PDF

A New Auto-Tuning PI Controller by Pattern Recognition (패턴 인식에 의한 새로운 자동조정 PI제어기)

  • Park, Gwi-Tae;Lee, Kee-Sang;Park, Tae-Hong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.7
    • /
    • pp.696-705
    • /
    • 1991
  • This paper describes the procedures for pre-tuning and re-tuning the gains of PI controller based on output patterns -output error integral- of the unknown process which may not have any information, for example, system order, deadtime, time constant, etc. The key ideas of the proposed adaptive scheme are as follows. The scheme determines the initial gains by using ZNM (Ziegler-Nichols Method) with relay feedback, and then the adaptive algorithms by pattern recognition are introduced for re-runing the PI gains with on-line scheme whenever control conditions are changed. Because, among the various auto-tuning procedures, ANM with relay feedback has the difficulty in re-tuning with on-line and Bristol method has no comment on initial settings and has variables to pre-determine, which makes the algorithm comples, the proposed methods have the combined scheme with above two procedures to recover those problems. And this paper proposes a simple way to determine adaptive constant in Bristol method. To show the validity of the proposed method, an example is illustrated by computer simulation and a laboratory process, heat exchanger, is experimented.

Digital State Feedback Current Control using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • A digital state feedback control method for the current mode control of DC-DC converters is proposed in this paper. This approach can precisely achieve interleaved current sharing among the converter modules. As the controller design and system analysis are performed in the time domain, the proposed method can easily satisfy the required converter specification by using the pole placement technique. The digital state feedback controller in the continuous and discrete time domain is derived for the robust tracking control. For the verification of the proposed control scheme, a parallel module bi-directional converter in a prototype 42V/14V hybrid automotive power system, which is a design example in the continuous time domain, and a parallel module buck converter, which is a design example in the discrete time domain, are implemented using a TMS320F2812 digital signal processor (DSP).

Implementation and performance evaluatio of learning control method for robot dyamics control (로봇의 동역학 제어를 위한 학습제어 기법의 구현 및 성능 평가)

  • 이동훈;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.552-555
    • /
    • 1997
  • Recently, increasing attention has been paid to the application of learning control method to robot manipulator control. Because the learning control method does not require an exact dynamic model, it is flexible and easy to implement. In this paper, we implement a learning control scheme which consists of a unique feedforward learning controller and a linear feedback controller. The learning control method does not require acceleration terms that are sensitive to noise and has the capability of rejecting unknown disturbances and adapting itself to time-varying system parameters. The feasibility of the learning control scheme is soon by implementing the control scheme to a commercial robot manipulator and the performance of which is also compared with the conventional linear PID control method.

  • PDF