• 제목/요약/키워드: federated learning

검색결과 76건 처리시간 0.021초

키 분배를 활용한 동형암호 기반의 연합학습 보안 강화 기법 (A Method for Enhancing Security in Federated Learning Using Homomorphic Encryption with Key Distribution)

  • 권대호;아짓쿠마;최봉준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.824-825
    • /
    • 2024
  • 연합학습에서 로컬 모델을 통해 참가자의 데이터 프라이버시를 침해할 가능성이 있다. 동형암호 기반 연합학습은 학습 과정에서 모든 가중치를 암호화해 통신 과정에서의 공격을 차단한다. 그러나 기존의 Paillier 동형암호 기반 연합학습은 모든 참가자가 같은 공개키 및 비밀키를 공유하는 문제가 있다. 본 연구에서는 지속적인 선택적 키 분배를 도입하여 외부에서 다른 참가자의 로컬 모델에 접속할 수 없도록 하고, 내부에서도 다른 참가자의 로컬 모델을 획득하기 어렵게 한다. MNIST 데이터를 사용하여 CNN 모델의 성능을 평가한 결과, 제안된 방법이 기존과 유사한 정확도를 보여준다.

연합학습 기반 스마트팩토리 영역별 보안위협 대응방안 (Countermeasures for Security Threats by Smart Factory Area based on Federated Learning)

  • 정인수;김득훈;곽진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.333-336
    • /
    • 2024
  • 스마트팩토리는 기존 제조산업에 ICT 기술이 융합된 지능형 공장이다. 이는 IT(Information Technology)영역과 OT(Operation Technology)으로 구분되고, 영역 간 연결을 통해 제조공정 자동화 및 지능화를 수행한다. IT영역은 외부 네트워크와 연결되어 스마트팩토리의 전사업무 관리를 수행하며, OT영역은 폐쇄망 네트워크로 구성되어 직접적인 제조과정을 수행한다. 이는 2개의 영역으로 구분되어 자동화 및 지능화된 제조공정 과정을 수행함에 따라 구조가 복잡해지고 있으며, 이로 인해 스마트팩토리 보안위협이 발생 가능한 공격 표면이 증가하고 있다. 이에 대응하기 위해서는 스마트팩토리 IT영역과 OT영역의 특징을 분석하고, 영역별 적합한 보안위협 대응체계를 수립해야 한다. 이에 따라, 본 논문에서는 다수의 장치에 대한 학습이 용이하고, 세부적으로 학습기법을 구분할 수 있는 연합학습을 활용하여 스마트팩토리 영역별 적합한 보안위협 대응방안을 제안한다.

MEC 블록체인에서 연합학습의 효율적인 모델 전송 연구 (Research on efficient model transfer of federated learning in 5G MEC blockchain)

  • 강보찬;김동오
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.590-591
    • /
    • 2024
  • 최근에 개인 데이터의 프라이버시가 중요해 지면서, 딥러닝 분야에서 개인 데이터 프라이버시 보호할 수 있는 연합학습 기술이 주목받고 있다. 특히 5G MEC나 블록체인 환경과 같이 통신 부하 및 지연 시간이 중요한 영역에서 연합학습 모델의 전송 비용 감소에 관한 연구가 활발히 진행 중이다. 본 논문에서는 연합학습 과정에서 효율적인 모델 전송을 위해 레이어 단위로 모델을 전송하는 기법을 제안한다. 실험 결과를 통해, 레이어 단위로 전송함으로써, 전송 데이터는 66% 줄어들 수 있지만, 정확도 변화는 1% 이내임을 확인하였다.

웨어러블 기기에서 데이터수 기반 마하라노비스 군집화 연합학습을 통한 스트레스 및 감정탐지 (Stress Affect Detection At Wearable Devices Via Clustered Federated Learning Based On Number of Samples Mahalanobis Distance)

  • 윤태환;최봉준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.764-767
    • /
    • 2024
  • 웨어러블 디바이스에서는 사용자의 다양한 메타데이터를 수집할 수 있다. 그러나 이런 개인정보를 함유하고 있는 데이터를 수집하는 것은 사용자에게 개인정보침해 위협을 야기한다. 때문에 본 논문에서는 개인정보보호를 통한 웨어러블 디바이스 데이터활용방안으로 연합학습을 채택하였다. 다만 기존 연합학습에서도 해결해야할 문제점들이 있다. 우리는 그중에서도 데이터이질성(Data Heterogeneity) 문제해결을 위해 군집화(Clustering) 방법을 활용하였다. 또한 기존의 코사인유사도 기반 군집화에서 파라미터중요도가 반영되지 않는다는 문제점을 해결하고자 데이터수 기반 마하라노비스거리(Number of Samples Mahalanobis Distance) 군집화 방법을 제시하였다. 이를 통해 WESAD(Werable Stress Affect Detection)데이터에서 피실험자의 데이터 이질성이 존재하는 상황에서 기존 연합학습보다 학습 안정성 측면에서 좋음을 보여주었다.

The Possibility of Neural Network Approach to Solve Singular Perturbed Problems

  • Kim, Jee-Hyun;Cho, Young-Im
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.69-76
    • /
    • 2021
  • 최근 특이성 교란 미적분 경계값 문제를 해결하기 위해 신경회로망 접근이 연구되고 있다. 특히 다양한 학습 알고리즘을 가진 백프로파게이션 알고리즘에 의해 훈련하는 피드-포워드 신경회로망의 이론적 모델이 제시되고 있으며, 딥러닝, 전이학습, 연합학습 등의 신경회로망 모델이 매우 빠르게 개발되고 있다. 본 논문의 목적은 특이성 교란 문제를 점근법적 방법과 함께 해결하기 위해 고도의 정확성과 속도를 가진 신경회로망 접근법에 관해 연구하는 것이다. 이를 위해 본 논문에서는 특이성 교란문제의 결과치와 교란되지 않은 문제의 결과치의 차이에 대해 신경회로망 접근 식을 사용하여 시뮬레이션 하였고 신경회로망 접근식의 효율성도 제시하였다. 결론적으로 특이성 교란 문제를 수식이 아닌 단순한 신경회로망 접근으로 효율적으로 해결할 수 있음을 제시한 것이 본 논문의 주요 기여사항이다.

차분 프라이버시를 적용한 연합학습 연구 (Research on Federated Learning with Differential Privacy)

  • 이주은;김영서;이수빈;배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.749-752
    • /
    • 2024
  • 연합학습은 클라이언트가 중앙 서버에 원본 데이터를 주지 않고도 학습할 수 있도록 설계된 분산된 머신러닝 방법이다. 그러나 클라이언트와 중앙 서버 사이에 모델 업데이트 정보를 공유한다는 점에서 여전히 추론 공격(Inference Attack)과 오염 공격(Poisoning Attack)의 위험에 노출되어 있다. 이러한 공격을 방어하기 위해 연합학습에 차분프라이버시(Differential Privacy)를 적용하는 방안이 연구되고 있다. 차분 프라이버시는 데이터에 노이즈를 추가하여 민감한 정보를 보호하면서도 유의미한 통계적 정보 쿼리는 공유할 수 있도록 하는 기법으로, 노이즈를 추가하는 위치에 따라 전역적 차분프라이버시(Global Differential Privacy)와 국소적 차분 프라이버시(Local Differential Privacy)로 나뉜다. 이에 본 논문에서는 차분 프라이버시를 적용한 연합학습의 최신 연구 동향을 전역적 차분 프라이버시를 적용한 방향과 국소적 차분 프라이버시를 적용한 방향으로 나누어 검토한다. 또한 이를 세분화하여 차분 프라이버시를 발전시킨 방식인 적응형 차분 프라이버시(Adaptive Differential Privacy)와 개인화된 차분 프라이버시(Personalized Differential Privacy)를 응용하여 연합학습에 적용한 방식들에 대하여 특징과 장점 및 한계점을 분석하고 향후 연구방향을 제안한다.