• 제목/요약/키워드: federated learning

검색결과 76건 처리시간 0.023초

A Conceptual Architecture for Ethic-Friendly AI

  • Oktian, Yustus-Eko;Brian, Stanley;Lee, Sang-Gon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.9-17
    • /
    • 2022
  • 최첨단 AI 시스템은 방대한 데이터 수집에서 알고리즘 편향에 이르기까지 많은 윤리적 문제를 드러내고 있다. 이에 본 논문에서는 연합학습과 블록체인을 결합하여, 더 윤리적인 AI 아키텍처를 제안하였다. AI의 윤리성에 관한 중요한 문제들을 논의하고, 문헌조사를 통하여 윤리적 AI 시스템에 대한 요구사항을 연구하고 도출한다. 제안한 아키텍처의 요구사항 만족을 분석하였다. 제안한 AI 구조를 디자인에 채택함으로써 AI 서비스를 보다 윤리적으로 수행할 수 있다.

NoN-IID MNIST 데이터의 연합학습 연구 (A Study on Federated Learning of Non-IID MNIST Data)

  • 이주원;방준일;백종우;김화종
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.533-534
    • /
    • 2023
  • 본 논문에서는 불균형하게 분포된(Non-IID) 데이터를 소유하고 있는 데이터 소유자(클라이언트)들을 가정하고, 데이터 소유자들 간 원본 데이터의 직접적인 이동 없이도 딥러닝 학습이 가능하도록 연합학습을 적용하였다. 실험 환경 구성을 위하여 MNIST 손글씨 데이터 세트를 하나의 숫자만 다량 보유하도록 분할하고 각 클라이언트에게 배포하였다. 연합학습을 적용하여 손글씨 분류 모델을 학습하였을 때 정확도는 85.5%, 중앙집중식 학습모델의 정확도는 90.2%로 연합학습 모델이 중앙집중식 모델 대비 약 95% 수준의 성능을 보여 연합학습 시 성능 하락이 크지 않으며 특수한 상황에서 중앙집중식 학습을 대체할 수 있음을 보였다.

  • PDF

지속적인 모델 최적화를 위한 연합 학습 효율화 전략 (For continuous model optimization Federated learning efficiency strategy)

  • 김영수;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.780-783
    • /
    • 2024
  • 본 논문에서는 지속적으로 최적화된 인공지능 모델을 적용하기 위한 방안으로 연합 학습(Federated Learning)을 활용한 접근법을 제시한다. 최근 다양한 산업 분야에서 인공지능 활용에 대한 필요성이 증가하고 있다. 금융과 같은 일부 산업은 강력한 보안, 높은 정확도, 규제 준수, 실시간 대응이 요구됨과 동시에 정적 시스템 환경 특성으로 적용된 인공지능 모델의 최적화가 어렵다. 이러한 환경적 한계 해결을 위하여, 연합 학습을 통한 모델의 최적화 방안을 제안한다. 연합 학습은 데이터 프라이버시를 유지하면서 모델의 지속적 최적화를 제공이 가능한 강력한 아키텍처이다. 그러나 연합 학습은 클라이언트와 중앙 서버의 반복적인 통신과 학습으로, 불필요한 자원에 대한 소요가 요구된다. 이러한 연합 학습의 단점 극복을 위하여, 주요도 높은 클라이언트의 선정 및 클라이언트와 중앙 서버의 조기 중단(early stopping) 전략을 통한 지속적, 효율적 최적화가 가능한 연합 학습 모델의 운영 전략을 제시한다.

연합 학습기반 수중 사물 인터넷 (Federated Learning-Internet of Underwater Things)

  • 신하 쉬르티카;고굴라무디 프라딥레디;박수현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.140-142
    • /
    • 2023
  • Federated learning (FL) is a new paradigm in machine learning (ML) that enables multiple devices to collaboratively train a shared ML model without sharing their local data. FL is well-suited for applications where data is sensitive or difficult to transmit in large volumes, or where collaborative learning is required. The Internet of Underwater Things (IoUT) is a network of underwater devices that collect and exchange data. This data can be used for a variety of applications, such as monitoring water quality, detecting marine life, and tracking underwater vehicles. However, the harsh underwater environment makes it difficult to collect and transmit data in large volumes. FL can address these challenges by enabling devices to train a shared ML model without having to transmit their data to a central server. This can help to protect the privacy of the data and improve the efficiency of training. In this view, this paper provides a brief overview of Fed-IoUT, highlighting its various applications, challenges, and opportunities.

연합 학습 환경에서의 Task-Specific Adaptive Differential Privacy 메커니즘 평가 방안 연구 (Study on Evaluation Method of Task-Specific Adaptive Differential Privacy Mechanism in Federated Learning Environment)

  • 우타리예바 아쎔;최윤호
    • 정보보호학회논문지
    • /
    • 제34권1호
    • /
    • pp.143-156
    • /
    • 2024
  • 연합 학습(FL)은 여러 공동 작업자 간에 분산된 모델 학습을 위한 강력한 방법론으로 부상해 데이터 공유의 필요성을 없애준다. FL은 데이터 프라이버시를 보호하는 기능으로 호평을 받고 있지만, 다양한 유형의 프라이버시 공격으로부터 자유롭지 않다. 대표적인 개인정보 보호 기술인 차분 프라이버시(DP)는 이러한 취약점에 대응하기 위해 널리 사용된다. 이 논문에서는 기존의 작업별 적응형 DP 메커니즘을 FL 환경에 적용해 성능을 평가한다. 포괄적인 분석을 통해 다양한 DP 메커니즘이 공유 글로벌 모델의 성능에 미치는 영향을 평가하며, 특히 다양한 데이터 배포 및 분할 스키마에 주의를 기울인다. 이를 통해, FL에서 개인정보 보호와 유용성 간의 복잡한 상호 작용에 대한 이해를 심화하고, 성능 저하 없이 데이터를 보호할 수 있는 검증된 방법론을 제공한다.

개인화 디지털 트윈을 위한 연합학습 기반 클라이언트 훈련 가속 방식 (Federated learning-based client training acceleration method for personalized digital twins)

  • 정영환;최원기;계효선;김지형;송민환;이상신
    • 인터넷정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.23-37
    • /
    • 2024
  • 디지털 트윈은 현실세계의 물리적 객체를 디지털 세계의 가상객체로 모사하고 시뮬레이션을 통해 미래에 발생 가능한 현상을 예측함으로써, 현실세계의 문제를 해결 또는 최적화하기 위해 고안된 M&S(Modeling and Simulation) 기술이다. 디지털 트윈은 지금까지 도시, 산업 시설 등 대규모 환경에서 특정 목적을 달성하기 위해 수집된 다양한 데이터 기반으로 정교하게 설계되고 활용되어 왔다. 이러한 디지털 트윈 기술을 실생활에 적용하고 사용자 맞춤형 서비스 기술로 확장하기 위해서는 개인정보 보호, 시뮬레이션의 개인화 등 실질적이지만 민감한 문제를 해결해야 한다. 이러한 문제를 해결하기 위해 본 논문에서는 개인화 디지털 트윈을 위한 연합학습 기반의 클라이언트 훈련 가속 방식(FACTS)을 제안한다. 기본적인 접근 방식은 클러스터 기반의 적응형 연합학습 훈련 절차를 활용해 개인정보를 보호하면서 동시에 사용자와 유사한 훈련 모델을 선택하고 훈련을 가속하는 것이다. 다양한 통계적으로 이질적인 조건의 실험 결과 FACTS는 기존의 FL 방식에 비해 훈련 속도 및 자원 효율성 측면에서 우수한 것으로 나타난다.

이산 코사인 변환 기반 Gradient Leakage 방어 기법 (Gradient Leakage Defense Strategy based on Discrete Cosine Transform)

  • 박재훈;김광수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.2-4
    • /
    • 2021
  • 분산된 환경에서 머신 러닝의 학습 가중치를 공유하여 학습하는 방법은 훈련 데이터를 직접 공유하는 것이 아니기 때문에 안전한 것으로 여겨졌다. 하지만, 최근 연구에 따르면 악의적인 공격자가 공유된 가중치를 분석하여 원본 데이터를 완벽하게 복원할 수 있는 취약점이 발견되었다. Gradient Leakage Attack은 이러한 취약점을 이용해 훈련 데이터를 복원하는 공격 기법이다. 본 연구에서는 개별 장치에서 학습을 진행하고 가중치를 서버와 공유하는 학습 환경인 연합 학습 환경에서 해당 공격을 방어하기 위해 이산 코사인 변환에 기반한 이미지 변환 기법을 제시한다. 실험 결과, 우리의 이미지 변환 기법을 적용하면 공유된 가중치로부터 원본 데이터를 완벽하게 복원할 수 없다.

  • PDF

DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측 (5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning)

  • 박석우;이오성;나인호
    • 스마트미디어저널
    • /
    • 제13권4호
    • /
    • pp.33-48
    • /
    • 2024
  • 향상된 모바일 광대역(eMBB), 초저지연 및 고신뢰 통신(URLLC), 대규모 기계형 통신(mMTC) 등의 특징을 가진 5G의 등장으로 인해 효율적인 네트워크 관리와 서비스 제공을 위해 증가하는 네트워크 트래픽과 복잡성 해결이 시급한 상황이다.본 논문에서는 기계학습(Machine Learning, ML) 및 딥러닝(Deep Learning, DL)기술을 활용하여 5G 네트워크의 초고속, 초저지연, 초연결성이라는 주요 과제를 해결하면서 네트워크 슬라이싱 및 자원 할당을 동적으로 최적화하는 새로운 접근 방식을 제시한다. 제안된 기법에서는 네트워크 트래픽 및 자원 할당에 대한 예측 모델, 네트워크 대역폭 및 지연 시간을 최적화하면서 동시에 개인 정보와 보안을 향상시키기 위한 연합 학습(FL) 기법을 사용한다. 특히, 본 논문에서는 랜덤 포레스트와 LSTM 등 다양한 알고리듬과 모델의 구현 방법에 대해 자세히 다루며, 이를 통해 5G 네트워크 운영의 자동화와 지능화를 위한 방법론을 제시한다. 마지막으로 제안된 기법을 통해 5G 네트워크에 ML 및 DL을 적용하여 얻을 수 있는 성능향상 효과를 성능평가 및 분석을 통해 검증하고 다양한 산업 응용 분야에서 네트워크 슬라이싱 및 자원 관리 최적화를 위한 솔루션을 제시한다.

IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리 (AI Model Repository for Realizing IoT On-device AI)

  • 이석준;최충재;성낙명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.597-599
    • /
    • 2022
  • IoT 디바이스에서 on-device AI를 수행할 때, 타겟 서비스나 디바이스의 환경에 따라 필요한 AI 모델이 달라질 수 있다. 또한, 기존 AI 모델도 federated learning과 같이 추가적인 데이터를 이용해 트레이닝을 하거나 보다 향상된 새로운 기법을 사용하는 등 업데이트가 일어날 수 있다. 이에 따라 IoT 디바이스에서 양질의 AI 서비스를 수행하기 위해서는 상황에 따라 필요한 AI 모델을 선택적으로 사용하거나 최적화된 최신 버전의 AI 모델로 업데이트 할 수 있어야 한다. 본 논문에서는 이를 지원하기 위한 AI 모델 레포지토리를 제안한다. 레포지토리는 AI 모델의 등록, 검색, 관리 및 배포를 지원하며 실사용을 위한 웹 포털을 포함한다. 제안하는 시스템의 실효성 확인을 위해 Node.js와 Vue.js로 구현하여 동작을 확인하였다.

  • PDF

UAV 기반 재난 재해 감시 시스템에서 GPS 스푸핑 방지를 위한 연합학습 모델링 (Federated Learning modeling for defense against GPS Spoofing in UAV-based Disaster Monitoring Systems)

  • 김동희;도인실;채기준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.198-201
    • /
    • 2021
  • 무인 항공기(UAV, Unmanned Aerial Vehicles)는 높은 기동성을 가지며 설치 비용이 저렴하다는 이점이 있어 홍수, 지진 등의 재난 재해 감시 시스템에 이용되고 있다. 재난 재해 감시 시스템에서 UAV는 지상에 위치한 사물인터넷(IoT, Internet of Things) 기기로부터 데이터를 수집하는 임무를 수행하기 위해 계획된 항로를 따라 비행한다. 이때 UAV가 정상 경로로 비행하기 위해서는 실시간으로 GPS 위치 확인이 가능해야 한다. 만일 UAV가 계산한 현재 위치의 GPS 정보가 잘못될 경우 비행경로에 대한 통제권을 상실하여 임무 수행을 완료하지 못하는 결과가 초래될 수 있다는 취약점이 존재한다. 이러한 취약점으로 인해 UAV는 공격자가 악의적으로 거짓 GPS 위치 신호를 전송하는GPS 스푸핑(Spoofing) 공격에 쉽게 노출된다. 본 논문에서는 신뢰할 수 있는 시스템을 구축하기 위해 지상에 위치한 기기가 송신하는 신호의 세기와 GPS 정보를 이용하여 UAV에 GPS 스푸핑 공격 여부를 탐지하고 공격당한 UAV가 경로를 이탈하지 않도록 대응하기 위해 연합학습(Federated Learning)을 이용하는 방안을 제안한다.