최첨단 AI 시스템은 방대한 데이터 수집에서 알고리즘 편향에 이르기까지 많은 윤리적 문제를 드러내고 있다. 이에 본 논문에서는 연합학습과 블록체인을 결합하여, 더 윤리적인 AI 아키텍처를 제안하였다. AI의 윤리성에 관한 중요한 문제들을 논의하고, 문헌조사를 통하여 윤리적 AI 시스템에 대한 요구사항을 연구하고 도출한다. 제안한 아키텍처의 요구사항 만족을 분석하였다. 제안한 AI 구조를 디자인에 채택함으로써 AI 서비스를 보다 윤리적으로 수행할 수 있다.
본 논문에서는 불균형하게 분포된(Non-IID) 데이터를 소유하고 있는 데이터 소유자(클라이언트)들을 가정하고, 데이터 소유자들 간 원본 데이터의 직접적인 이동 없이도 딥러닝 학습이 가능하도록 연합학습을 적용하였다. 실험 환경 구성을 위하여 MNIST 손글씨 데이터 세트를 하나의 숫자만 다량 보유하도록 분할하고 각 클라이언트에게 배포하였다. 연합학습을 적용하여 손글씨 분류 모델을 학습하였을 때 정확도는 85.5%, 중앙집중식 학습모델의 정확도는 90.2%로 연합학습 모델이 중앙집중식 모델 대비 약 95% 수준의 성능을 보여 연합학습 시 성능 하락이 크지 않으며 특수한 상황에서 중앙집중식 학습을 대체할 수 있음을 보였다.
본 논문에서는 지속적으로 최적화된 인공지능 모델을 적용하기 위한 방안으로 연합 학습(Federated Learning)을 활용한 접근법을 제시한다. 최근 다양한 산업 분야에서 인공지능 활용에 대한 필요성이 증가하고 있다. 금융과 같은 일부 산업은 강력한 보안, 높은 정확도, 규제 준수, 실시간 대응이 요구됨과 동시에 정적 시스템 환경 특성으로 적용된 인공지능 모델의 최적화가 어렵다. 이러한 환경적 한계 해결을 위하여, 연합 학습을 통한 모델의 최적화 방안을 제안한다. 연합 학습은 데이터 프라이버시를 유지하면서 모델의 지속적 최적화를 제공이 가능한 강력한 아키텍처이다. 그러나 연합 학습은 클라이언트와 중앙 서버의 반복적인 통신과 학습으로, 불필요한 자원에 대한 소요가 요구된다. 이러한 연합 학습의 단점 극복을 위하여, 주요도 높은 클라이언트의 선정 및 클라이언트와 중앙 서버의 조기 중단(early stopping) 전략을 통한 지속적, 효율적 최적화가 가능한 연합 학습 모델의 운영 전략을 제시한다.
Federated learning (FL) is a new paradigm in machine learning (ML) that enables multiple devices to collaboratively train a shared ML model without sharing their local data. FL is well-suited for applications where data is sensitive or difficult to transmit in large volumes, or where collaborative learning is required. The Internet of Underwater Things (IoUT) is a network of underwater devices that collect and exchange data. This data can be used for a variety of applications, such as monitoring water quality, detecting marine life, and tracking underwater vehicles. However, the harsh underwater environment makes it difficult to collect and transmit data in large volumes. FL can address these challenges by enabling devices to train a shared ML model without having to transmit their data to a central server. This can help to protect the privacy of the data and improve the efficiency of training. In this view, this paper provides a brief overview of Fed-IoUT, highlighting its various applications, challenges, and opportunities.
연합 학습(FL)은 여러 공동 작업자 간에 분산된 모델 학습을 위한 강력한 방법론으로 부상해 데이터 공유의 필요성을 없애준다. FL은 데이터 프라이버시를 보호하는 기능으로 호평을 받고 있지만, 다양한 유형의 프라이버시 공격으로부터 자유롭지 않다. 대표적인 개인정보 보호 기술인 차분 프라이버시(DP)는 이러한 취약점에 대응하기 위해 널리 사용된다. 이 논문에서는 기존의 작업별 적응형 DP 메커니즘을 FL 환경에 적용해 성능을 평가한다. 포괄적인 분석을 통해 다양한 DP 메커니즘이 공유 글로벌 모델의 성능에 미치는 영향을 평가하며, 특히 다양한 데이터 배포 및 분할 스키마에 주의를 기울인다. 이를 통해, FL에서 개인정보 보호와 유용성 간의 복잡한 상호 작용에 대한 이해를 심화하고, 성능 저하 없이 데이터를 보호할 수 있는 검증된 방법론을 제공한다.
디지털 트윈은 현실세계의 물리적 객체를 디지털 세계의 가상객체로 모사하고 시뮬레이션을 통해 미래에 발생 가능한 현상을 예측함으로써, 현실세계의 문제를 해결 또는 최적화하기 위해 고안된 M&S(Modeling and Simulation) 기술이다. 디지털 트윈은 지금까지 도시, 산업 시설 등 대규모 환경에서 특정 목적을 달성하기 위해 수집된 다양한 데이터 기반으로 정교하게 설계되고 활용되어 왔다. 이러한 디지털 트윈 기술을 실생활에 적용하고 사용자 맞춤형 서비스 기술로 확장하기 위해서는 개인정보 보호, 시뮬레이션의 개인화 등 실질적이지만 민감한 문제를 해결해야 한다. 이러한 문제를 해결하기 위해 본 논문에서는 개인화 디지털 트윈을 위한 연합학습 기반의 클라이언트 훈련 가속 방식(FACTS)을 제안한다. 기본적인 접근 방식은 클러스터 기반의 적응형 연합학습 훈련 절차를 활용해 개인정보를 보호하면서 동시에 사용자와 유사한 훈련 모델을 선택하고 훈련을 가속하는 것이다. 다양한 통계적으로 이질적인 조건의 실험 결과 FACTS는 기존의 FL 방식에 비해 훈련 속도 및 자원 효율성 측면에서 우수한 것으로 나타난다.
분산된 환경에서 머신 러닝의 학습 가중치를 공유하여 학습하는 방법은 훈련 데이터를 직접 공유하는 것이 아니기 때문에 안전한 것으로 여겨졌다. 하지만, 최근 연구에 따르면 악의적인 공격자가 공유된 가중치를 분석하여 원본 데이터를 완벽하게 복원할 수 있는 취약점이 발견되었다. Gradient Leakage Attack은 이러한 취약점을 이용해 훈련 데이터를 복원하는 공격 기법이다. 본 연구에서는 개별 장치에서 학습을 진행하고 가중치를 서버와 공유하는 학습 환경인 연합 학습 환경에서 해당 공격을 방어하기 위해 이산 코사인 변환에 기반한 이미지 변환 기법을 제시한다. 실험 결과, 우리의 이미지 변환 기법을 적용하면 공유된 가중치로부터 원본 데이터를 완벽하게 복원할 수 없다.
향상된 모바일 광대역(eMBB), 초저지연 및 고신뢰 통신(URLLC), 대규모 기계형 통신(mMTC) 등의 특징을 가진 5G의 등장으로 인해 효율적인 네트워크 관리와 서비스 제공을 위해 증가하는 네트워크 트래픽과 복잡성 해결이 시급한 상황이다.본 논문에서는 기계학습(Machine Learning, ML) 및 딥러닝(Deep Learning, DL)기술을 활용하여 5G 네트워크의 초고속, 초저지연, 초연결성이라는 주요 과제를 해결하면서 네트워크 슬라이싱 및 자원 할당을 동적으로 최적화하는 새로운 접근 방식을 제시한다. 제안된 기법에서는 네트워크 트래픽 및 자원 할당에 대한 예측 모델, 네트워크 대역폭 및 지연 시간을 최적화하면서 동시에 개인 정보와 보안을 향상시키기 위한 연합 학습(FL) 기법을 사용한다. 특히, 본 논문에서는 랜덤 포레스트와 LSTM 등 다양한 알고리듬과 모델의 구현 방법에 대해 자세히 다루며, 이를 통해 5G 네트워크 운영의 자동화와 지능화를 위한 방법론을 제시한다. 마지막으로 제안된 기법을 통해 5G 네트워크에 ML 및 DL을 적용하여 얻을 수 있는 성능향상 효과를 성능평가 및 분석을 통해 검증하고 다양한 산업 응용 분야에서 네트워크 슬라이싱 및 자원 관리 최적화를 위한 솔루션을 제시한다.
IoT 디바이스에서 on-device AI를 수행할 때, 타겟 서비스나 디바이스의 환경에 따라 필요한 AI 모델이 달라질 수 있다. 또한, 기존 AI 모델도 federated learning과 같이 추가적인 데이터를 이용해 트레이닝을 하거나 보다 향상된 새로운 기법을 사용하는 등 업데이트가 일어날 수 있다. 이에 따라 IoT 디바이스에서 양질의 AI 서비스를 수행하기 위해서는 상황에 따라 필요한 AI 모델을 선택적으로 사용하거나 최적화된 최신 버전의 AI 모델로 업데이트 할 수 있어야 한다. 본 논문에서는 이를 지원하기 위한 AI 모델 레포지토리를 제안한다. 레포지토리는 AI 모델의 등록, 검색, 관리 및 배포를 지원하며 실사용을 위한 웹 포털을 포함한다. 제안하는 시스템의 실효성 확인을 위해 Node.js와 Vue.js로 구현하여 동작을 확인하였다.
무인 항공기(UAV, Unmanned Aerial Vehicles)는 높은 기동성을 가지며 설치 비용이 저렴하다는 이점이 있어 홍수, 지진 등의 재난 재해 감시 시스템에 이용되고 있다. 재난 재해 감시 시스템에서 UAV는 지상에 위치한 사물인터넷(IoT, Internet of Things) 기기로부터 데이터를 수집하는 임무를 수행하기 위해 계획된 항로를 따라 비행한다. 이때 UAV가 정상 경로로 비행하기 위해서는 실시간으로 GPS 위치 확인이 가능해야 한다. 만일 UAV가 계산한 현재 위치의 GPS 정보가 잘못될 경우 비행경로에 대한 통제권을 상실하여 임무 수행을 완료하지 못하는 결과가 초래될 수 있다는 취약점이 존재한다. 이러한 취약점으로 인해 UAV는 공격자가 악의적으로 거짓 GPS 위치 신호를 전송하는GPS 스푸핑(Spoofing) 공격에 쉽게 노출된다. 본 논문에서는 신뢰할 수 있는 시스템을 구축하기 위해 지상에 위치한 기기가 송신하는 신호의 세기와 GPS 정보를 이용하여 UAV에 GPS 스푸핑 공격 여부를 탐지하고 공격당한 UAV가 경로를 이탈하지 않도록 대응하기 위해 연합학습(Federated Learning)을 이용하는 방안을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.