• Title/Summary/Keyword: fed batch

Search Result 447, Processing Time 0.026 seconds

Pilot Scale Production of (R)-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli. (Pilot 규모에서의 재조합 대장균을 이용한 (R)-3-Hydroxybutyric acid 생산)

  • 최종일;이승환;최성준;이상엽
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 2004
  • Production of (R)-3-hydroxybutyric acid (R3HB) by fed-batch culture and continuous culture of metabolically engineered Escherichia coli harboring Ralstonia eutropha PHB biosynthesis and depolymerase genes was examined in a 30 1 pilot-scale fermentor. A new stable two-plasmid system, pBRRed containing the R. eutropha PHB depolymerase gene and pMCS 105 containing the R. eutropha PHB biosynthesis genes, was developed. Among a variety of E. coli strains harboring plasmids, recombinant E. coli XL-10 Gold (pBRRed, pMCS105) was able to produce R3HB with the highest efficiency in a batch culture. By the fed-batch culture of recombinant E. coli XL-10 Gold(pBRRed, pMCS 105) in a 30 1 fer-mentor, the final R3HB concentration was 22.4 g/l giving a productivity of 0.97 g/l-h. To produce R3HB to a high concentration with high productivity, a new strategy of fed-batch culture followed by a continuous culture was investigated. The maximum productivity and R3HB concentration were 5.06 g/l-h and 25.3 g/l, respectively. These results show that economical production of R3HB is possible by recombinant E. coli in large scale.

Effect of glucose Feeding Strategy on Biomass of Serratia marcescens in High Density Fed-Batch Fermentation (고밀도 유기식 배양에서 글루코스 공급 방법이 Serratia marcescens의 균체량에 미치는 영향)

  • Kim, Kwang;Lee, Sang-Rok;Shon, Jeong-Woo;Ji, Hong-Seok
    • KSBB Journal
    • /
    • v.13 no.6
    • /
    • pp.681-686
    • /
    • 1998
  • Effect of glucose feeding strategy and initial concentration of glucose on Serratia marcescens ATCC 27117 in high cell density fed-batch fermentation was investigated. The final biomasses in batch, constant feeding, constant and exponentially feeding strategy at glucose starvation condition in fed-batch were 1.40, 5,07, 6,93 and 7.60 g/L at 40, 41, 24 and 40 hrs, respectively. Productivities of biomass were 0.035, 0.124, 0.289 and 0.190 g/L$.$h, respectively. As a result, constant feeding strategy at starvation condition was 1.5∼8.6 times higher than other strategies. The relationship between dissolved oxygen and glucose feeding times was good identified in exponential feeding strategy and constant feeding strategy at starvation condition. And high cell density cultivation was obtained when minimal media was used.

  • PDF

A Fermentation Strategy for Anti-MUC1 C595 Diabody Expression in Recombinant Escherichia Coli

  • Lan, John Chi-Wei;Ling, Tau Chuan;Hamilton, Grant;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.425-431
    • /
    • 2006
  • The development of fermentation conditions for the production of C595 diabody fragment (dbFv) in E. coli HB2151 clone has been explored. Investigations were carried out to study the effect of carbon supplements over the expression period, the comparison of C595 dbfv production in synthetic and complex media, the influence of acetic acid upon antibody production, and comparison of one-stage and two-stage processes operated at batch or fed-batch modes in bioreactor. Yeast extract supplied during expression yielded more antibody fragment than any other carbon supply. The synthetic medium presented higher specific productivity (0.066 mg dbFv $g^{-1}$ dry cell weight) when compared to the complex medium (0.044 mg dbFv $g^{-1}$ DCW). The comparison of fermentation strategies demonstrated that (1) one-stage fed-batch fermentation performed higher C595 dbFv production than that operated in batch mode which was significantly affected by acetate concentration; (2) a two-stage batch operation could enhance C595 dbFv production. It was found that a concentration of 12.3 mg $L^{-1}$ broth of C595 dbFv and a cell concentration of 10.8g $L^{-1}$ broth were achieved at the end of two-stage operation in 5-L fermentation.

The Improvement of Cephalosporin C Production by Fed-batch Culture of Cephalosporium acremonium M25 Using Rice Oil

  • Kim Jin Hee;Lim Jung Soo;Kim Seung Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.459-464
    • /
    • 2004
  • The objective of this study is to improve cephalosporin C (CPC) production byoptimization of medium and culture conditions. A statistical method was introduced to optimize the main culture medium. The main medium for CPC production was optimized using a statistical method. Glucose and corn steep liquor (CSL) were found to be the most effective factors for CPC production. Glucose and CSL were optimized to 2.84 and $6.68\%$, respectively. CPC produc­tion was improved $50\%$ by feeding of $5\%$ rice oil at day 3rd and 5th day during the shake flask culture of C acremonium M25. The effect of agitation speeds on CPC production in a 2.5-L bio­reactor was also investigated with fed-batch mode. The maximum cell mass (54.5 g/L) was obtained at 600 rpm. However, the maximum CPC production (0.98 g/L) was obtained at 500 rpm. At this condition, the maximum CPC production was improved about $132\%$ compared to the re­sult with batch flask culture.

Controlling Mammalian Cell Metabolism in Bioreactors

  • Hu, Wei-Shou;Weichang, Zhou;Lilith F. Europa
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • Animal cells in culture typically convert most of the glucose they consume into lactate. The accumulation of lactate, however, is commonly cited as one of the factors that inhibit cell growth and limit the maximum cell concentration that can be achieved in culture. The specific production of lactate and the amount of glucose converted to lactate can be reduced when cells are grown in a fed-batch culture in which the residual glucose concentration is maintained at low levels. Such a fed-batch culture was used to grow and adapt hybridoma cells into a low-lactate-producing state before changing into continuous culture. The cells reached and maintained a high viable cell concentration at steady state. In a similar manner, cells that were initially grown in batch culture and a glucose-rich environment reached a steady state with a cell concentration that is much lower. The feed composition and dilution rates for both cultures were similar, suggesting steady state multiplicity. From a processing perspective the desired steady state among those is the one with the least metabolite production. At such seady state nutrient concentration in the feed can be further increased to increase cell and product concentrations without causing the metabolite inhibitory effect typically seen in a cell culture. Controlling cell metabolism in a continuous culture to reduce or eliminate waste metabolite production may significantly improve the productivity of mammalian cell culture processes.

  • PDF

Production of Compaction from Penicillium sp. Y-8515 (Penicillium sp. Y-8515에 의한 Compactin 생산)

  • 박주웅;이주경;권태종;박용일;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.291-297
    • /
    • 2000
  • A strain producing high levels of compaction was isolated from soil and identified as Penicillium sp. Y-8515 based on the morphological characteristics and ribosomal RNA sequence analysis. Optimization of several different carbon and nitrogen sources for the effective production of compaction was performed resulting in the medium compositions containing 5%(w/v) glucose, 1.0 % soybean meal, 0.5% yeast extract, 0.5%(NH$_4$)$_2$$SO_4$, 0.25%,$ NaH_2$$PO_4$, 0.25% $CaCO_3$. The fixed con-centration of glucose(5%, w/v) and relatively lower concentrations(less than 2.5%, w/v) of soybean meal stimu-lated the transformation of the growth morphology from filamentous to pellet form. Comparing to that by filamentous form, the production of compactin by pellet form increased up to 1.5 folds. In a fed-batch fermentation, continuous feeding of the mixture of glucose and nitrogen source at the ratio of 10:1 showed 3.5-fold more produc-tion yield of compaction comparing to the batch mode.

  • PDF

Production of cis, cis-Muconic Acid from Benzoic Acid via Microbial Transformation

  • SangGu Bang;Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.36-40
    • /
    • 1996
  • For the production of cis, cis-muconic acid via biocatalytic conversion reactions from a toxic cosubstrate, benzoic acid, a fed-batch process using computer-controlled DO-stat feeding was developed. The mutant strain of Pseudomonas putida BM014 produced cis, cis-muconic acid from benzoic acid with high conversion yield. More than 32 g/L of cis, cis-muconic acid was accumulated in 42h and a productivity of 1.4g/(L.h)was achieved.

  • PDF

A Study on the Explanation of Activated Sludge Treatment Hindrance and its Control (활성오니처리 장해의 규명과 그 제어에 관한 연구)

  • 최택열
    • Journal of Environmental Health Sciences
    • /
    • v.20 no.2
    • /
    • pp.28-38
    • /
    • 1994
  • New problems have been recently posed on the abnormal foaming (Scum) in an aeration tank and the sludge flotation in a final sedimentation tank during the activated sludge process. However, the activities of the causing bacteria, Nocardia-amarae in an aeration tank have not been searched out at all. Therefore, in this article the activities of Nocardia-amarae in an aeration tank have been closely examined by means of the changes of (F/M) ratio, SRT and inflowing substrate using continuous type and fed-batch type. Summarized results of experiments are as follows. 1. Regrading continuous culture when synthetic wastewater was used substrate neither the increase in the number of Nocardia-amarae in the aeration tank nor the Occurrence of Scum was observed. 2. In the case of fed-batch culture, Nocardia-amarae in the aeration tank increased due to the partial change in substrate and the effect of SRT was significant. 3. Once the scum was formed and the quantity of added Nocardia-amarae and substrate were not changed, the effect of STR was not significant.

  • PDF

Adaptive Nonlinear Constrained Predictive Control of pH Neutralization in Fed-batch Bio-reactor

  • Zhe, Xu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.90-95
    • /
    • 2003
  • In this paper, an Adaptive Nonlinear Constrained Model Predictive Control (ANCMPC) is presented for a pH control in a fed-batch bio-reactor. The pH model is represented with Hammerstein Model. The static nonlinear part of Hammerstein model is described with the static pH model, and the dynamic linear part of the Hammerstein model is described with the CARIMA model. The parameters of the CARIMA model is estimated on-line with the input and output measurements of the system using a recursive least squares type of identi�cation algorithm. The e�ectiveness of the proposed controller is shown through simulations.

  • PDF

High-Level Production of Spider Silk Protein by Fed-Batch Cultivation of Recombinant Escherichia coli and Its Purification

  • Lee, Seok-Jae;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.719-722
    • /
    • 2001
  • Silk proteins from Nephila clavipes are fibrous proteins containing repetitive sequences with both crystalline and amorphous domains. In order to obtain high-level production of silk protein, the synthetic genes had 16 contiguous units of the consensus repeat sequence of the silk protein were expressed in Escherichia coli BL21(DE3) under the strong inducible T7 promoter. For production of recombinant silk protein in large amounts, pH-stat fed-batch cultures were carried out. The recombinant silk protein was produced as soluble forms in E. coli, and the recombinant silk protein content was as high as 11% of the total protein. When cells were induced at $OD_{600}$ of 60, the amount of silk protein produced was 6.49 g/L. After simple purification steps, 9.2 mg of silk protein that was more than 80% pure was obtained from a 50 mL culture, and the recovery yield was 26.3%.

  • PDF