• Title/Summary/Keyword: fecal microbes

Search Result 35, Processing Time 0.024 seconds

Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation (지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교)

  • Jun, Sang Min;Song, Inhong;Kim, Kyeung;Hwang, Soon Ho;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

Effects of multi-enzyme supplementation in a corn and soybean meal-based diet on growth performance, apparent digestibility, blood characteristics, fecal microbes and noxious gas emission in growing pigs

  • Yin, Jia;Kim, In-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • The objective of this study was to determine the effect of multi-enzyme supplementation in a corn and soybean meal-based diet on the growth performance, apparent nutrient digestibility, blood profile, fecal microbes and noxious gas emission in growing pigs. A total of 80 crossbred [(Landrace ${\times}$ Yorkshire) ${\times}$ Duroc] growing pigs with an average body weight (BW) of $25.04{\pm}1.44kg$ were used in a 6-week experiment. The experimental treatments were as follows: CON, basal diet and; T1, basal diet + 100 mg/kg multi-enzyme. During the experiment, the pigs fed the diet with multi-enzyme supplementation had a higher gain to feed ratio (G/F) (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. On day 42, the pigs fed the diet with multi-enzyme supplementation had decreased $H_2S$ and $NH_3$ emissions (p < 0.05) than the pigs fed the diet without multi-enzyme supplementation. However, no effect was observed on nutrient digestibility, blood profiles and fecal microbes among the treatments (p > 0.05). In conclusion, it is suggested that multi-enzyme supplementation in a corn and soybean meal based diet can partly improve the growth performance and noxious gas emission of growing pigs.

Changes in growth performance, nutrient digestibility, immune blood profiles, fecal microbial and fecal gas emission of growing pigs in response to zinc aspartic acid chelate

  • Jiao, Yang;Li, Xinran;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.597-604
    • /
    • 2020
  • Objective: This study was conducted to investigate the effect of zinc aspartic acid chelate (Zn-ASP) on growth performance, nutrient digestibility, blood profiles, fecal microbial and fecal gas emission in growing pigs. Methods: A total of 160 crossbred ([Landrace×Yorkshire]×Duroc) growing pigs with an initial body weight (BW) of 25.56±2.22 kg were used in a 6-wk trial. Pigs were randomly allocated into 1 of 4 treatments according to their sex and BW (8 replicates with 2 gilts and 3 barrows per replication pen). Treatments were as follows: i) CON, basal diet, ii) TRT1, CON+0.1% Zn-ASP, iii) TRT2, CON+0.2% Zn-ASP, and iv) TRT3, CON+0.3% Zn-ASP. Pens were assigned in a randomized complete block design to compensate for known position effects in the experimental facility. Results: In the current study, BW, average daily gain, and gain:feed ratio showed significant improvement as dietary Zn-ASP increased (p<0.05) in growing pigs. Apparent total tract digestibility (ATTD) of dry matter was increased linearly (p<0.05) in pigs fed with Zn-ASP diets. A linear effect (p<0.05) was detected for the Zn concentration in blood with the increasing levels of Zn-ASP supplementation. Lactic acid bacteria and coliform bacteria were affected linearly (p<0.05) in pigs fed with Zn-ASP diets. However, no significant differences were observed in the ATTD of nitrogen, energy and Zn. And dietary Zn-ASP supplementation did not affect fecal ammonia, hydrogen sulfide and total mercaptans emissions in growing pigs. Conclusion: In conclusion, dietary supplementation with Zn-ASP of diet exerted beneficial effects on the growth performance, nutrient digestibility, blood profiles and fecal microbes in growing pigs.

Toward The Fecal Microbiome Project (분변 미생물군집 프로젝트)

  • Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.415-418
    • /
    • 2013
  • Since the development of the next generation sequencing (NGS) technology, 16S rRNA gene sequencing has become a major tool for microbial community analysis. Recently, human microbiome project (HMP) has been completed to identify microbes associated with human health and diseases. HMP achieved characterization of several diseases caused by bacteria, especially the ones in human gut. While human intestinal bacteria have been well characterized, little have been studied about other animal intestinal bacteria. In this study, we surveyed diversity of livestock animal fecal microbiota and discuss importance of studying fecal microbiota. Here, we report the initiation of the fecal microbiome project in South Korea.

Efficacy Assessment of the Co-Administration of Vancomycin and Metronidazole in Clostridioides difficile-Infected Mice Based on Changes in Intestinal Ecology

  • Saiwei Zhong;Jingpeng Yang;He Huang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.828-837
    • /
    • 2024
  • Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.

Microbiological Pollution Investigation of Spring water in Seogwipo city of Jeju Island (제주도내 서귀포시 해안가 저지대용천수의 미생물학적 오염도 조사)

  • Han, Yong-Jae;Kim, Man-Chul;Moon, Yung-Gun;Heo, Moon-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1025-1028
    • /
    • 2010
  • The bacteriological examination of spring water in Seogwipo-city was conducted. A total 11 spring water samples were performed from January to April, 2010. During the study period, the range of temperature was from 0.7 to $15.4^{\circ}C$, and result of the analyses showed that hydrogen ion concentrations (pH) for spring water was 0.33 to 7.8. salinity levels for sample average of 0.5 to 1.04‰, as the result of measuring dissolved oxygen (DO) for spring water showed that water dissolved oxygen were 1.02 to 7.14 mg/${\ell}$. The range of total coliform of spring water sample at 11 stations located in the designated spring water were <1.8~>1,600 MPN/100mL. And the range of geometric mean of total coliform were 1.9~117.1 MPN/100mL, The range of fecal coliform of spring water sample at 11 stations located in the designated spring water were <1.8~>1,600 MPN/100mL. And the range of geometric mean of fecal coliform were 1.8~68.1 MPN/100mL, respectively. Level of microbial contamination was examined in 11 samples for indication of bacterial contamination such as heterophic bacteria, EscherichiacoliO157;H7, salmonella spp., Vibrio parahaemolyticus, Staphylococcus aureus, Shigella spp. Were frequently detected from the spring water. Salmonella spp., S.aureus were detected in the range of $0{\sim}1.0{\times}10^1$, $0{\sim}3.0{\times}10^1$ CFU/ml, respectively. And the Escherichia coli O157;H7, Vibrio parahaemolyticus, Shigella spp. Were not detected from the examined spring water samples.

  • PDF

Evaluation of Houttuynia cordata and Taraxacum officinale on Growth Performance, Nutrient Digestibility, Blood Characteristics, and Fecal Microbial Shedding in Diet for Weaning Pigs

  • Yan, L.;Zhang, Z.F.;Park, J.C.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1439-1444
    • /
    • 2012
  • A total of 144 pigs ((Landrace${\times}$Yorkshire)${\times}$Duroc)] with an average initial BW of $8.45{\pm}0.57$ kg were used in a 5-wk growth trial. Pigs were randomly allocated to 4 treatments with 9 replications per pen in a randomized complex block design. Dietary treatments included: i) CON (basal diet), ii) ANT (CON+tylosin 1 g/kg), iii) H1 (CON+H. cordata 1 g/kg) and iv) T1 (CON+T. officinale 1 g/kg). In this study, pigs fed the ANT and T1 treatment had a higher (p<0.05) average daily gain (ADG) and gain:feed (G:F) ratio than those fed CON and H1 treatment. Dietary ANT and T1 treatment led to a higher energy digestibility than the CON group. No difference (p>0.05) was observed on the growth performance and apparent total tract digestibility with H1 supplementation compared with the CON treatment. The inclusion of ANT treatment led to a higher (p<0.05) lymphocyte concentration compared with the CON treatment. Dietary supplementation of herbs did not affect (p>0.05) the blood characteristics (white blood cell (WBC), red blood cell (RBC), IgG, lymphocyte). No difference was observed on (p<0.05) fecal microbial shedding (E. coli and lactobacillus) between ANT and CON groups. Treatments H1 and T1 reduced the fecal E. coli concentration compared with the CON treatment, whereas the fecal lactobacillus concentration was not affected by the herb supplementation (p>0.05). In conclusion, the inclusion of T. officinale (1 g/kg) increased growth performance, feed efficiency, energy digestibility similarly to the antibiotic treatment. Dietary supplementation of T. officinale and H. cordata (1 g/kg) reduced the fecal E. coli concentration in weaning pigs.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Functional Properties of Bifidobacterium longum and Their Incorporation into Cheese Making Process (비피도박테리움 롱검의 기능성과 치즈 제조에 활용)

  • Kim, Hyoun Wook;Jeong, Seok Geun;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.75-82
    • /
    • 2016
  • Members of the genus Bifidobacterium are prevalent in the human colon and represent up to 90% of all bacteria in fecal samples of breast-fed infants, and 3~5% of adult fecal microbiota. Bifidobacteria produce organic acids, thus reducing the colon pH to a level inhibitory for pathogenic bacteria. They can also detoxify a number of toxic compounds and adhere to the colon mucosa, thus preventing the adherence of pathogens and induction of colon cancer. Recently, we identified a novel Bifidobacterium longum subsp. longum strain, KACC 91563, in a fecal sample of a Korean neonate, and demonstrated its functional properties. We showed that B. longum KACC 91563 alleviates food allergy through mast cell suppression and produces antioxidative and antihypertensive peptides by casein hydrolysis. Dairy products are considered as an ideal food system for the delivery of probiotic cultures to the human gastrointestinal tract. Cheese affords protection to probiotic microbes during gastric transit due to its relatively high pH, more solid consistency, higher fat content, and higher buffering capacity. Incorporation of B. longum KACC 91563 into cheese making is currently under study.

Gut-residing Microbes Alter the Host Susceptibility to Autoantibody-mediated Arthritis

  • Lee, Hyerim;Jin, Bo-Eun;Jang, Eunkyeong;Lee, A Reum;Han, Dong Soo;Kim, Ho-Youn;Youn, Jeehee
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • K/BxN serum can transfer arthritis to normal mice owing to the abundant autoantibodies it contains, which trigger innate inflammatory cascades in joints. Little is known about whether gut-residing microbes affect host susceptibility to autoantibody-mediated arthritis. To address this, we fed C57BL/6 mice with water containing a mixture of antibiotics (ampicillin, vancomycin, neomycin, and metronidazol) for 2 weeks and then injected them with K/BxN serum. Antibiotic treatment significantly reduced the amount of bacterial genomic DNA isolated from fecal samples, in particular a gene encoding 16S ribosomal RNA derived from segmented filamentous bacteria. Arthritic signs, as indicated by the arthritic index and ankle thickness, were significantly attenuated in antibiotic-treated mice compared with untreated controls. Peyer's patches and mesenteric lymph nodes from antibiotic-treated mice contained fewer IL-17-expressing cells than those from untreated mice. Antibiotic treatment reduced serum C3 deposition in vitro via the alternative complement pathway. IL-$17^{-/-}$ congenic C57BL/6 mice were less susceptible to K/BxN serum-transferred arthritis than their wild-type littermates, but were still responsive to treatment with antibiotics. These results suggest that gut-residing microbes, including segmented filamentous bacteria, induce IL-17 production in GALT and complement activation via the alternative complement pathway, which cause the host to be more susceptible to autoantibody-mediated arthritis.