• Title/Summary/Keyword: fecal bacteria

Search Result 301, Processing Time 0.029 seconds

Microbiological Pollution Investigation of Spring water in Seogwipo city of Jeju Island (제주도내 서귀포시 해안가 저지대용천수의 미생물학적 오염도 조사)

  • Han, Yong-Jae;Kim, Man-Chul;Moon, Yung-Gun;Heo, Moon-Soo
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.1025-1028
    • /
    • 2010
  • The bacteriological examination of spring water in Seogwipo-city was conducted. A total 11 spring water samples were performed from January to April, 2010. During the study period, the range of temperature was from 0.7 to $15.4^{\circ}C$, and result of the analyses showed that hydrogen ion concentrations (pH) for spring water was 0.33 to 7.8. salinity levels for sample average of 0.5 to 1.04‰, as the result of measuring dissolved oxygen (DO) for spring water showed that water dissolved oxygen were 1.02 to 7.14 mg/${\ell}$. The range of total coliform of spring water sample at 11 stations located in the designated spring water were <1.8~>1,600 MPN/100mL. And the range of geometric mean of total coliform were 1.9~117.1 MPN/100mL, The range of fecal coliform of spring water sample at 11 stations located in the designated spring water were <1.8~>1,600 MPN/100mL. And the range of geometric mean of fecal coliform were 1.8~68.1 MPN/100mL, respectively. Level of microbial contamination was examined in 11 samples for indication of bacterial contamination such as heterophic bacteria, EscherichiacoliO157;H7, salmonella spp., Vibrio parahaemolyticus, Staphylococcus aureus, Shigella spp. Were frequently detected from the spring water. Salmonella spp., S.aureus were detected in the range of $0{\sim}1.0{\times}10^1$, $0{\sim}3.0{\times}10^1$ CFU/ml, respectively. And the Escherichia coli O157;H7, Vibrio parahaemolyticus, Shigella spp. Were not detected from the examined spring water samples.

  • PDF

Isolation and Characterization of Bifidobacterium longum subsp. longum BCBR-583 for Probiotic Applications in Fermented Foods

  • Yi, Da Hye;Kim, You-Tae;Kim, Chul-Hong;Shin, Young-Sup;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1846-1849
    • /
    • 2018
  • Recent human gut microbiome studies have supported that the genus Bifidobacterium is one of the most beneficial bacteria for human intestinal health. To develop a new probiotic strain for functional food applications, fourteen fecal samples were collected from healthy Koreans and the strain BCBR-583 was newly selected and isolated from a 25-year-old Korean woman's fecal sample using the selective medium for Bifidobacterium. Subsequent fructose-6-phosphate phosphoketolase (F6PPK) test and 16S rRNA gene sequencing analysis of the strain BCBR-583 confirmed that it belongs to B. longum subsp. longum. The stress resistance tests showed that it has oxygen and heat tolerance activities (5- and 3.9-fold increase for 24 h at 60 and 120 rpm, respectively; $78.61{\pm}6.67%$ survival rate at $45^{\circ}C$ for 24 h). In addition, gut environment adaptation tests revealed that this strain may be well-adapted in the gut habitat, with gastric acid/bile salt resistance ($85.79{\pm}1.53%$, survival rate under 6 h treatments of gastric acid and bile salt) and mucin adhesion ($73.72{\pm}7.36%$). Furthermore, additional tests including cholesterol lowering assay showed that it can reduce $86.31{\pm}1.85%$ of cholesterol. Based on these results, B. longum BCBR-583 has various stress resistance for survival during food processing and environmental adaptation activities for dominant survival in the gut, suggesting that it could be a good candidate for fermented food applications as a new probiotic strain.

Effect of Fructooligosaccharide-inulin of Jerusalem artichoke on the Growth of Intestinal Microorganisms of Pig (돼지감자 Fructo 올리고당-Inulin이 돼지의 주요장내세균의 생육에 미치는 영향)

  • Kim, Chang-Gon;Kim, Su-Il;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.395-399
    • /
    • 1993
  • Fructooligosaccharide-inulin(FOSI) separated from Jerusalem artichoke-autolysate was tested to determine its effect on the growth of fecal microorganisms of pig. Total microorganisms in fecal samples averaged $10^{9.83}$ per g of wet feces and the numbers of predominant Bacteroidaceae and Peptococcaceae were $10^{9.3}\;and\;10^{9.2}$, respectively. Lactobacilli, Eubacteria, Clostridia were found out to be the next common bacteria. The addition of FOSI to the 'feces media' and PYF broth increased the numbers of total microorganisms and lactobacillis up to those of glucose-addition media. The number of Bifidobacteria was greater about $50{\sim}500$ times on FOSI-addition media rather than on glucose-addition media. While FOSI showed no different effect on the Clostridia growth compared with glucose, both sugars reduced the number of E. coli to $10^{-1}{\sim}10^{-3}$ level of no sugar media.

  • PDF

Isolation of Pichia burtonii from the Feces of an Enteritis Bearded Dragon (Pogona vitticeps) (장염을 나타낸 bearded dragon의 분변에서 Pichia burtonii의 분리)

  • Kang, Hyo-Min;Han, Jae-Ik;Lee, Sook-Jin;Jang, Hye-Jin;Na, Ki-Jeong
    • Journal of Veterinary Clinics
    • /
    • v.28 no.2
    • /
    • pp.254-257
    • /
    • 2011
  • A 2-year-old bearded dragon was referred to the Veterinary Medical Center at the College of Veterinary Medicine, Chungbuk National University with reduced activity and anorexia. On fecal examination, over growth of a bacteria and the proliferation of a yeast-like organism were found. The patient diagnosed with enteritis. By using fungal cultures and molecular typing, the yeast was identified as Pichia (P.) burtonii. The bearded dragon was treated with oral ketoconazole and trimethoprim/sulfamethoxazole. After 3 days, the dragon was recovered and fecal examination showed that the yeast had disappeared from the feces. The strain P. burtonii is supposed opportunistic pathogen in bearded dragon with enteritis according to its reports in a human. This report is the first paper about overgrowth of P. burtonii in a bearded dragon.

A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats

  • Kim, Kyung-Ah;Yoo, Hye Hyun;Gu, Wan;Yu, Dae-Hyung;Jin, Ming Ji;Choi, Hae-Lim;Yuan, Kathy;Guerin-Deremaux, Laetitia;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.183-187
    • /
    • 2015
  • Background: Gut microflora play a crucial role in the biotransformation of ginsenosides to compound K (CK), which may affect the pharmacological effects of ginseng. Prebiotics, such as NUTRIOSE, could enhance the formation and consequent absorption of CK through the modulation of gut microbial metabolic activities. In this study, the effect of a prebiotic fiber (NUTRIOSE) on the pharmacokinetics of ginsenoside CK, a bioactive metabolite of ginsenosides, and its mechanism of action were investigated. Methods: Male Sprague-Dawley rats were given control or NUTRIOSE-containing diets (control diet + NUTRIOSE) for 2 wk, and ginseng extract or vehicle was then orally administered. Blood samples were collected to investigate the pharmacokinetics of CK using liquid chromatography-tandem mass spectrometry. Fecal activities that metabolize ginsenoside Rb1 to CK were assayed with fecal specimens or bacteria cultures. Results: When ginseng extract was orally administered to rats fed with 2.5%, 5%, or 10% NUTRIOSE containing diets, the maximum plasma concentration ($C_{max}$) and area under the plasma concentration-time curve values of CK significantly increased in a NUTRIOSE content-dependent manner. NUTRIOSE intake increased glycosidase activity and CK formation in rat intestinal contents. The CK-forming activities of intestinal microbiota cultured in vitro were significantly induced by NUTRIOSE. Conclusion: These results show that prebiotic diets, such as NUTRIOSE, may promote the metabolic conversion of ginsenosides to CK and the subsequent absorption of CK in the gastrointestinal tract and may potentiate the pharmacological effects of ginseng.

Fecal microbiome shifts by different forms of copper supplementations in growing pigs

  • Kim, Minji;Cho, Jae Hyoung;Seong, Pil-Nam;Jung, Hyunjung;Jeong, Jin Young;Kim, Sheena;Kim, Hyeri;Kim, Eun Sol;Keum, Gi Beom;Guevarra, Robin B.;Kim, Hyeun Bum
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1386-1396
    • /
    • 2021
  • Copper is an essential mineral for pigs, thus it is used as a feed additive in the forms of copper sulfate. Therefore, this study aimed at characterizing the fecal microbiota shifts in pigs as fed by different forms of copper supplementation. 40 growing pigs aged 73 ± 1 days with an average weight of 30.22 ± 1.92kg were randomly divided into 5 groups. The control group (CON) fed with basal diet, while treatment groups were fed a basal diet supplemented with 100 ppm/kg of copper sulfate (CuSO4), Cu-glycine complex (CuGly), Cu-amino acid complex (CuAA), and Cu-hydroxy(4methylthio)butanoate chelate complex (CuHMB) for 28 days of trial, respectively. The data presented the comparison between inorganic and organic copper supplementation through gut microbiota in growing pigs. Alpha and Beta diversity anaylsis resulted in copper supplementation did shifted gut microbioal community structure. At the phylum level, Firmicutes and Bacteroidetes were the most abundant phyla at all times regardless of treatment. At the genus level, the relative abundances of Prevotella, Lactobacillus, Megasphaera, and SMB53 of the CuGly and CuHMB groups were significantly higher than those of copper sulfate and basal diet groups. Overall, this study may provide the potential role of organic copper replacing inorganic copper, resulting in increased beneficial bacteria in the pig gut.

Sows fed with synergistic blend of short- and medium chain organic acid has a carryover effect on post-weaning growth rate

  • Sampath, Vetriselvi;Park, Jae Hong;Pineda, Lane;Han, Yanming;Cho, Sungbo;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.302-311
    • /
    • 2022
  • This study investigated the effect of a synergistic blend of free and buffered organic acid (FMP) on the performance of piglets born to sows supplemented with a blend of short- and medium-chain organic acids (SGG) during the late gestation and lactation period. A total of 150 multiparous sows (n = 50/treatment, Landrace × Yorkshire) were blocked (2.4 parity) and assigned to 1 of 3 dietary treatments: CON - corn-soybean meal-based basal diet, SGG-Low - CON+ 1.5 kg/ton SGG, and SGG-High - CON + 3kg/ton SGG. During weaning, 600 piglets (6.72 ± 0.5kg) which weaned from sows supplemented with 3 levels of SGG were allocated to 2 weaner diets (Control and FMP - 3kg/ton) following 3 × 2 factorial arrangement. Supplemental effects on performance were measured at d0-d21 and d 21-42, and the entire period. Pigs fed with FMP and born to sows supplemented with SGG-High gained more weight and ate more (p < 0.05) compared with those in the CON group in both phases, and with SGG-Low in the second phase. Over the entire post-weaning period, piglets born to sows supplemented with SGG-Low and SGG-High had a higher average daily gain (ADG) and body weight (BW) (p < 0.05). Regardless of sow treatment, pigs fed with an FMP diet had higher ADG (p < 0.001), BW (p = 0.045), and a lower feed conversion ratio (p = 0.033). Also, feeding FMP diets reduced the fecal Escherichia coli and Clostridium perfringens counts at d42. The current study indicates that sows fed SGG supplement had a positive carry-over effect on the post-weaning growth rate, and FMP supplement enhances the growth performance and reduced the number of C. perfringens and E. coli. Thus, the application of 3 kg/ton of SGG in sows' diet and subsequent feeding of piglets with FMP would be an effective strategy to improve growth rate and reduce pathogenic bacteria in post-weaned piglets.

Bacterial communities in the feces of insectivorous bats in South Korea

  • Injung An;Byeori Kim;Sungbae Joo;Kihyun Kim;Taek-Woo Lee
    • Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.120-127
    • /
    • 2024
  • Bats serve as vectors and natural reservoir hosts for various infectious viruses, bacteria, and fungi. These pathogens have also been detected in bat feces and can cause severe illnesses in hosts, other animals, and humans. Because pathogens can easily spread into the environment through bat feces, determining the bacterial communities in bat guano is crucial to mitigate potential disease transmission and outbreaks. This study primarily aimed to examine bacterial communities in the feces of insectivorous bats living in South Korea. Fecal samples were collected after capturing 84 individuals of four different bat species in two regions of South Korea, and the bacterial microbiota was assessed through next generation sequencing of the 16S rRNA gene. The results revealed that, with respect to the relative abundance at the phylum level, Myotis bombinus was dominated by Firmicutes (47.24%) and Proteobacteria (42.66%) whereas Miniopterus fuliginosus (82.78%), Rhinolophus ferrumequinum (63.46%), and Myotis macrodactylus (78.04%) were dominated by Proteobacteria. Alpha diversity analysis showed no difference in abundance between species and a significant difference (p < 0.05) between M. bombinus and M. fuliginosus. Beta-diversity analysis revealed that Clostridium, Asaia, and Enterobacteriaceae_g were clustered as major factors at the genus level using principal component analysis. Additionally, linear discriminant analysis effect size was conducted based on relative expression information to select bacterial markers for each bat species. Clostridium was relatively abundant in M. bombinus, whereas Mycoplasma_g10 was relatively abundant in R. ferrumequinum. Our results provide an overview of bat guano microbiota diversity and the significance of pathogenic taxa for humans and the environment, highlighting a better understanding of preventing emerging diseases. We anticipate that this research will yield bioinformatic data to advance our knowledge of overall microbial genetic diversity and clustering characteristics in insectivorous bat feces in South Korea.

Microbiological Studies on Feed Supplements (사료첨가제(飼料添加劑)의 미생물오염(微生物汚染)에 관(關)하여)

  • Park, Su Kyung;Tak, Ryun Bin
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.132-140
    • /
    • 1986
  • Eighty one products from 36 kinds of vitamin and mineral feed supplement collected during August, 1984 to February, 1985 were examined for microbiological contamination. In addition, 83 strains of coliform isolated from the samples were tested for the resistance to 8 kinds of antimicrobial drugs and distribution of R plasmid. General bacteria were detected in all of samples tested. Bacterial population was varied from less than 10 per gram of the sample to 1,400,000 per gram and 34 (42%) of 81 samples were contaminated with 100 to 1,000 cells per gram. Coliform isolation, which was more frequent in samples with larger number of general bacteria, was possible in 14 (17.3%) out of 81 samples tested and 6 (33.3%) out of 18 companies were coliform positive in their products. Forty one (49.4%) out of 83 coliform isolates were fecal coliform. The frequency of resistant strains was the highest to sulfadimethoxine (Sa) with 92.8% and followed by streptomycin (Sm, 67.5%), tetracycline (Tc, 50.6%), kanamycin (Km, 26.5%), chloramphenicol (Cm, 18.1%) and ampicillin (Am, 15.7%). No strain was resistant to nalidixic acid (Na) and gentamicin (Gm). The resistance frequency of fecal coliform strains were higher compare to non-fecal coliform strains. There were minimum inhibitory concentration (MIC) of $3,200{\mu}g/m{\ell}$ or higher in 7 strains to Am, 3 to Sm and 3 to Km, and 70 strains had MIC of $1,600{\mu}g/m{\ell}$ of higher to Sa while Tc had MICs from $1.6{\mu}g/m{\ell}$ to $400{\mu}g/m{\ell}$. All strains had MICs of $6.3{\mu}g/m{\ell}$ of lower to Na and $3.1{\mu}g/m{\ell}$ of lower to Gm. Seventy nine (95.2%) of 83 strains were resistant to one or more drugs tested. The most frequent resistance patterns were SaSm (14.5%) and followed by SaSmTc(12%), SaSmTcKm(8.4%) SaTc (8.4%) and SaSmKm (7.2%) ; total 19 different patterns were noted. Thirty two (40.5%) of 79 resistant strains were transferred all of a part of their resistance to Escherichia coli ML 1410. The frequency of transferable resistance was high in Am (100%) and Cm (80%) while low in Tc (38.1%), Sa (18.2%), Sm (17.9%) and Km (4.5%).

  • PDF

Molecular Analysis of Colonized Bacteria in a Human Newborn Infant Gut

  • Park Hee-Kyung;Shim Sung-Sub;Kim Su-Yung;Park Jae-Hong;Park Su-Eun;Kim Hak-Jung;Kang Byeong-Chul;Kim Cheol-Min
    • Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.345-353
    • /
    • 2005
  • The complex ecosystem of intestinal micro flora is estimated to harbor approximately 400 different microbial species, mostly bacteria. However, studies on bacterial colonization have mostly been based on culturing methods, which only detect a small fraction of the whole microbiotic ecosystem of the gut. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the few days after birth, phylogenetic analysis was performed using 16S rDNA sequences from the DNA iso-lated from feces on the 1st, 3rd, and 6th day. 16S rDNA libraries were constructed with the amplicons of PCR conditions at 30 cycles and $50^{\circ}C$ annealing temperature. Nine independent libraries were produced by the application of three sets of primers (set A, set B, and set C) combined with three fecal samples for day 1, day 3, and day 6 of life. Approximately 220 clones ($76.7\%$) of all 325 isolated clones were characterized as known species, while other 105 clones ($32.3\%$) were characterized as unknown species. The library clone with set A universal primers amplifying 350 bp displayed increased diversity by days. Thus, set A primers were better suited for this type of molecular ecological analysis. On the first day of the life of the infant, Enterobacter, Lactococcus lactis, Leuconostoc citreum, and Streptococcus mitis were present. The largest taxonomic group was L. lactis. On the third day of the life of the infant, Enterobacter, Enterococcus faecalis, Escherichia coli, S. mitis, and Streptococcus salivarius were present. On the sixth day of the life of the infant, Citrobacter, Clostridium difficile, Enterobacter sp., Enterobacter cloacae, and E. coli were present. The largest taxonomic group was E. coli. These results showed that microbiotic diversity changes very rapidly in the few days after birth, and the acquisition of unculturable bacteria expanded rapidly after the third day.