• Title/Summary/Keyword: feature vector selection

Search Result 184, Processing Time 0.024 seconds

Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection (합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로)

  • Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.21-39
    • /
    • 2020
  • Recently, deep learning has shown high performance in various applications such as pattern analysis and image classification. Especially known as a difficult task in the field of machine learning research, stock market forecasting is an area where the effectiveness of deep learning techniques is being verified by many researchers. This study proposed a deep learning Convolutional Neural Network (CNN) model to predict the direction of stock prices. We then used the feature selection method to improve the performance of the model. We compared the performance of machine learning classifiers against CNN. The classifiers used in this study are as follows: Logistic Regression, Decision Tree, Neural Network, Support Vector Machine, Adaboost, Bagging, and Random Forest. The results of this study confirmed that the CNN showed higher performancecompared with other classifiers in the case of feature selection. The results show that the CNN model effectively predicted the stock price direction by analyzing the embedded values of the financial data

Prediction of Diabetic Nephropathy from Diabetes Dataset Using Feature Selection Methods and SVM Learning (특징점 선택방법과 SVM 학습법을 이용한 당뇨병 데이터에서의 당뇨병성 신장합병증의 예측)

  • Cho, Baek-Hwan;Lee, Jong-Shill;Chee, Young-Joan;Kim, Kwang-Won;Kim, In-Young;Kim, Sun-I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.355-362
    • /
    • 2007
  • Diabetes mellitus can cause devastating complications, which often result in disability and death, and diabetic nephropathy is a leading cause of death in people with diabetes. In this study, we tried to predict the onset of diabetic nephropathy from an irregular and unbalanced diabetic dataset. We collected clinical data from 292 patients with type 2 diabetes and performed preprocessing to extract 184 features to resolve the irregularity of the dataset. We compared several feature selection methods, such as ReliefF and sensitivity analysis, to remove redundant features and improve the classification performance. We also compared learning methods with support vector machine, such as equal cost learning and cost-sensitive learning to tackle the unbalanced problem in the dataset. The best classifier with the 39 selected features gave 0.969 of the area under the curve by receiver operation characteristics analysis, which represents that our method can predict diabetic nephropathy with high generalization performance from an irregular and unbalanced dataset, and physicians can benefit from it for predicting diabetic nephropathy.

Emotion Recognition and Expression Method using Bi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 감정인식 및 표현기법)

  • Joo, Jong-Tae;Jang, In-Hun;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.754-759
    • /
    • 2007
  • In this paper, we proposed the Bi-Modal Sensor Fusion Algorithm which is the emotional recognition method that be able to classify 4 emotions (Happy, Sad, Angry, Surprise) by using facial image and speech signal together. We extract the feature vectors from speech signal using acoustic feature without language feature and classify emotional pattern using Neural-Network. We also make the feature selection of mouth, eyes and eyebrows from facial image. and extracted feature vectors that apply to Principal Component Analysis(PCA) remakes low dimension feature vector. So we proposed method to fused into result value of emotion recognition by using facial image and speech.

Comparison of EEG Feature Vector for Emotion Classification according to Music Listening (음악에 따른 감정분류을 위한 EEG특징벡터 비교)

  • Lee, So-Min;Byun, Sung-Woo;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.696-702
    • /
    • 2014
  • Recently, researches on analyzing relationship between the state of emotion and musical stimuli using EEG are increasing. A selection of feature vectors is very important for the performance of EEG pattern classifiers. This paper proposes a comparison of EEG feature vectors for emotion classification according to music listening. For this, we extract some feature vectors like DAMV, IAV, LPC, LPCC from EEG signals in each class related to music listening and compare a separability of the extracted feature vectors using Bhattacharyya distance. So more effective feature vectors are recommended for emotion classification according to music listening.

Satellite Image Classification Based on Color and Texture Feature Vectors (칼라 및 질감 속성 벡터를 이용한 위성영상의 분류)

  • 곽장호;김준철;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.183-194
    • /
    • 1999
  • The Brightness, color and texture included in a multispectral satellite data are used as important factors to analyze and to apply the image data for a proper use. One of the most significant process in the satellite data analysis using texture or color information is to extract features effectively expressing the information of original image. It was described in this paper that six features were introduced to extract useful features from the analysis of the satellite data, and also a classification network using the back-propagation neural network was constructed to evaluate the classification ability of each vector feature in SPOT imagery. The vector features were adopted from the training set selection for the interesting region, and applied to the classification process. The classification results showed that each vector feature contained many merits and demerits depending on each vector's characteristics, and each vector had compatible classification ability. Therefore, it is expected that the color and texture features are effectively used not only in the classification process of satellite imagery, but in various image classification and application fields.

Combining Support Vector Machine Recursive Feature Elimination and Intensity-dependent Normalization for Gene Selection in RNAseq (RNAseq 빅데이터에서 유전자 선택을 위한 밀집도-의존 정규화 기반의 서포트-벡터 머신 병합법)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.18 no.5
    • /
    • pp.47-53
    • /
    • 2017
  • In past few years, high-throughput sequencing, big-data generation, cloud computing, and computational biology are revolutionary. RNA sequencing is emerging as an attractive alternative to DNA microarrays. And the methods for constructing Gene Regulatory Network (GRN) from RNA-Seq are extremely lacking and urgently required. Because GRN has obtained substantial observation from genomics and bioinformatics, an elementary requirement of the GRN has been to maximize distinguishable genes. Despite of RNA sequencing techniques to generate a big amount of data, there are few computational methods to exploit the huge amount of the big data. Therefore, we have suggested a novel gene selection algorithm combining Support Vector Machines and Intensity-dependent normalization, which uses log differential expression ratio in RNAseq. It is an extended variation of support vector machine recursive feature elimination (SVM-RFE) algorithm. This algorithm accomplishes minimum relevancy with subsets of Big-Data, such as NCBI-GEO. The proposed algorithm was compared to the existing one which uses gene expression profiling DNA microarrays. It finds that the proposed algorithm have provided as convenient and quick method than previous because it uses all functions in R package and have more improvement with regard to the classification accuracy based on gene ontology and time consuming in terms of Big-Data. The comparison was performed based on the number of genes selected in RNAseq Big-Data.

Feature Analysis of Ultrasonic Signals for Diagnosis of Welding Faults in Tubular Steel Tower (관형 철탑 용접 결함 진단을 위한 초음파 신호의 특징 분석)

  • Min, Tae-Hong;Yu, Hyeon-Tak;Kim, Hyeong-Jin;Choi, Byeong-Keun;Kim, Hyun-Sik;Lee, Gi-Seung;Kang, Seog-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.515-522
    • /
    • 2021
  • In this paper, we present and analyze a method of applying a machine learning to ultrasonic test signals for constant monitoring of the welding faults in a tubular steel tower. For the machine learning, feature selection based on genetic algorithm and fault signal classification using a support vector machine have been used. In the feature selection, the peak value, histogram lower bound, and normal negative log-likelihood from 30 features are selected. Those features clearly indicate the difference of signals according to the depth of faults. In addition, as a result of applying the selected features to the support vector machine, it has been possible to perfectly distinguish between the regions with and without faults. Hence, it is expected that the results of this study will be useful in the development of an early detection system for fault growth based on ultrasonic signals and in the energy transmission related industries in the future.

Classification of TV Program Scenes Based on Audio Information

  • Lee, Kang-Kyu;Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.91-97
    • /
    • 2004
  • In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.

A Study on MLP Neural Network Architecture and Feature Extraction for Korean Syllable Recognition (한국어 음절 인식을 위한 MLP 신경망 구조 및 특징 추출에 관한 연구)

  • 금지수;이현수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.672-675
    • /
    • 1999
  • In this paper, we propose a MLP neural network architecture and feature extraction for Korean syllable recognition. In the proposed syllable recognition system, firstly onset is classified by onset classification neural network. And the results information of onset classification neural network are used for feature selection of imput patterns vector. The feature extraction of Korean syllables is based on sonority. Using the threshold rate separate the syllable. The results of separation are used for feature of onset. nucleus and coda. ETRI's SAMDORI has been used by speech DB. The recognition rate is 96% in the speaker dependent and 93.3% in the speaker independent.

  • PDF

Music Classification Based On Emotion Utilizing Data Mining (데이터마이닝 기법을 이용한 감정 기반 음악 분류)

  • Jo, Wooyeon;Shon, Taeshik
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.941-944
    • /
    • 2015
  • 저장 장치의 급속한 발전으로 인해 기존에 서비스할 수 없었던 개인 사용자를 위한 클라우드 서비스가 활성화되고 있다. 이 중 음악을 대상으로 하는 스트리밍 및 공유 서비스는 다양한 음악의 종류를 수용하기 위해 체계적인 분류를 필요로 한다. 기존의 분류체계는 단순히 작곡가나 업로더의 의견에 의해서 일방적으로 정해지기 때문에 사용자가 중심이 되는 클라우드 서비스에는 어울리지 않는다. 따라서 본 논문은 이와 같은 문제점을 해결하기 위해 사랑의 감정을 기준으로 새로운 분류체계를 제안한다. 자동적인 분류를 위해 데이터마이닝 기법을 접목시켰으며, 원활한 마이닝을 위해 오디오 음악 파일(raw data)을 정해진 크기로 자르고 feature extraction을 통해 오디오 음악 파일에 대한 전처리를 수행하였다. 이후 feature selection을 수행하기 위해 clustering을 이용해 유효한 중요도를 지나는 feature를 선별하였으며 선별된 feature를 토대로 SVN(Support Vector Machine)을 이용해 feature의 중요도에 대한 유효성을 검증함과 동시에 분류를 수행하여 감정을 기반으로 분류한 결과를 보였다.