• Title/Summary/Keyword: feature space

Search Result 1,365, Processing Time 0.027 seconds

Human and Robot Tracking Using Histogram of Oriented Gradient Feature

  • Lee, Jeong-eom;Yi, Chong-ho;Kim, Dong-won
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.18-25
    • /
    • 2018
  • This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.

Study on the Characteristics of Space Organization of School Community Library -Focusing on a fact-finding study of school community library through life-learning city project carried out by Gangneung-si- (학교마을도서관 공간구성 특성에 관한 연구 -강릉시 평생학습도시 사업을 통한 학교마을도서관의 실태조사를 중심으로-)

  • Moon, Jung-In;Lee, Yo-Han
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.1
    • /
    • pp.21-28
    • /
    • 2011
  • The main purpose of this study is to analyze construction of space through the investigation of the cases of school community library through Gangneung-si's life-learning project and the findings from the analysis could be summarized as below. Firstly, most space used for school community library has the size of two classes in school on average and locals use generally space for reference and learning at school community library. Secondly, the construction of space of school community library is categorized into one for book-returning, references, reading, group learning and information, and an audio-visual space is also used for group learning and reading. A space for book-returning has features based on the location of its entrance and a space for reading features stand-up and sitting-on space considering size and usability. And a space for group learning has the feature of space planning that makes it possible for local people to get library programs and seminars and a space for information shows its feature of space planning that uses the wall.

Detection of the co-planar feature points in the three dimensional space (3차원 공간에서 동일 평면 상에 존재하는 특징점 검출 기법)

  • Seok-Han Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.499-508
    • /
    • 2023
  • In this paper, we propose a technique to estimate the coordinates of feature points existing on a 2D planar object in the three dimensional space. The proposed method detects multiple 3D features from the image, and excludes those which are not located on the plane. The proposed technique estimates the planar homography between the planar object in the 3D space and the camera image plane, and computes back-projection error of each feature point on the planar object. Then any feature points which have large error is considered as off-plane points and are excluded from the feature estimation phase. The proposed method is archived on the basis of the planar homography without any additional sensors or optimization algorithms. In the expretiments, it was confirmed that the speed of the proposed method is more than 40 frames per second. In addition, compared to the RGB-D camera, there was no significant difference in processing speed, and it was verified that the frame rate was unaffected even in the situation that the number of detected feature points continuously increased.

A Survey on Space Feature of Group Day Care Home in Taegu City - Space usage behavior of the institutions related to child care and education (III) - (대구시 소재 놀이방 공간에 관한 실측조사 - 아동 보육 및 교육관련 시설의 공간이용행태(III) -)

  • 안옥희;박인전;안지연;김수민
    • Korean Journal of Rural Living Science
    • /
    • v.8 no.2
    • /
    • pp.161-171
    • /
    • 1997
  • The purpose of this study was to investigate the space feature of group day care home in Taegu city. This study was conducted by means of the observation on the equipments, the actual measurement of space and environment of group day care home. And the questionnaire survey by the chief of group day care home was also used for this study. The samples for analysis were 20 group day care home located in Taegu city. The major findings were as follows ; 1. The chief's satisfaction of the facilities of group day care home and it's management was generally low. 2. The design of door, the possessing of furniture, and the items related to toilet should be improved in the space or environmental conditions. 3. According to the observation on the equipments, it was found that the environment of group day care home was generally not desirable.

  • PDF

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

Global Covariance based Principal Component Analysis for Speaker Identification (화자식별을 위한 전역 공분산에 기반한 주성분분석)

  • Seo, Chang-Woo;Lim, Young-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.1 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • This paper proposes an efficient global covariance-based principal component analysis (GCPCA) for speaker identification. Principal component analysis (PCA) is a feature extraction method which reduces the dimension of the feature vectors and the correlation among the feature vectors by projecting the original feature space into a small subspace through a transformation. However, it requires a larger amount of training data when performing PCA to find the eigenvalue and eigenvector matrix using the full covariance matrix by each speaker. The proposed method first calculates the global covariance matrix using training data of all speakers. It then finds the eigenvalue matrix and the corresponding eigenvector matrix from the global covariance matrix. Compared to conventional PCA and Gaussian mixture model (GMM) methods, the proposed method shows better performance while requiring less storage space and complexity in speaker identification.

  • PDF

Category Factor Based Feature Selection for Document Classification

  • Kang Yun-Hee
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.26-30
    • /
    • 2005
  • According to the fast growth of information on the Internet, it is becoming increasingly difficult to find and organize useful information. To reduce information overload, it needs to exploit automatic text classification for handling enormous documents. Support Vector Machine (SVM) is a model that is calculated as a weighted sum of kernel function outputs. This paper describes a document classifier for web documents in the fields of Information Technology and uses SVM to learn a model, which is constructed from the training sets and its representative terms. The basic idea is to exploit the representative terms meaning distribution in coherent thematic texts of each category by simple statistics methods. Vector-space model is applied to represent documents in the categories by using feature selection scheme based on TFiDF. We apply a category factor which represents effects in category of any term to the feature selection. Experiments show the results of categorization and the correlation of vector length.

  • PDF

Indoor Path Recognition Based on Wi-Fi Fingerprints

  • Donggyu Lee;Jaehyun Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2023
  • The existing indoor localization method using Wi-Fi fingerprinting has a high collection cost and relatively low accuracy, thus requiring integrated correction of convergence with other technologies. This paper proposes a new method that significantly reduces collection costs compared to existing methods using Wi-Fi fingerprinting. Furthermore, it does not require labeling of data at collection and can estimate pedestrian travel paths even in large indoor spaces. The proposed pedestrian movement path estimation process is as follows. Data collection is accomplished by setting up a feature area near an indoor space intersection, moving through the set feature areas, and then collecting data without labels. The collected data are processed using Kernel Linear Discriminant Analysis (KLDA) and the valley point of the Euclidean distance value between two data is obtained within the feature space of the data. We build learning data by labeling data corresponding to valley points and some nearby data by feature area numbers, and labeling data between valley points and other valley points as path data between each corresponding feature area. Finally, for testing, data are collected randomly through indoor space, KLDA is applied as previous data to build test data, the K-Nearest Neighbor (K-NN) algorithm is applied, and the path of movement of test data is estimated by applying a correction algorithm to estimate only routes that can be reached from the most recently estimated location. The estimation results verified the accuracy by comparing the true paths in indoor space with those estimated by the proposed method and achieved approximately 90.8% and 81.4% accuracy in two experimental spaces, respectively.

Constructing 3D Outlines of Objects based on Feature Points using Monocular Camera (단일카메라를 사용한 특징점 기반 물체 3차원 윤곽선 구성)

  • Park, Sang-Heon;Lee, Jeong-Oog;Baik, Doo-Kwon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.6
    • /
    • pp.429-436
    • /
    • 2010
  • This paper presents a method to extract 3D outlines of objects in an image obtained from a monocular vision. After detecting the general outlines of the object by MOPS(Multi-Scale Oriented Patches) -algorithm and we obtain their spatial coordinates. Simultaneously, it obtains the space-coordinates with feature points to be immanent within the outlines of objects through SIFT(Scale Invariant Feature Transform)-algorithm. It grasps a form of objects to join the space-coordinates of outlines and SIFT feature points. The method which is proposed in this paper, it forms general outlines of objects, so that it enables a rapid calculation, and also it has the advantage capable of collecting a detailed data because it supplies the internal-data of outlines through SIFT feature points.

An Acceleration Method of Face Detection using Forecast Map (예측맵을 이용한 얼굴탐색의 가속화기법)

  • 조경식;구자영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.2
    • /
    • pp.31-36
    • /
    • 2003
  • This paper proposes an acceleration method of PCA(Principal Component Analysis) based feature detection. The feature detection method makes decision whether the target feature is included in a given image, and if included, calculates the position and extent of the target feature. The position and scale of the target feature or face is not known previously, all the possible locations should be tested for various scales to detect the target. This is a search Problem in huge search space. This Paper proposes a fast face and feature detection method by reducing the search space using the multi-stage prediction map and contour Prediction map. A Proposed method compared to the existing whole search way, and it was able to reduce a computational complexity below 10% by experiment.

  • PDF