• 제목/요약/키워드: feature reduction

검색결과 599건 처리시간 0.022초

Aurora 특징파라미터 추출기법에 따른 한국어 연속숫자음 전화음성의 인식 성능 비교 (Performance Comparison of Korean Connected Digit Telephone Speech Recognition According to Aurora Feature Extraction)

  • 김민성;정성윤;손종목;배건성;김상훈
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.145-148
    • /
    • 2003
  • To improve the recognition performance of Korean connected digit telephone speech, in this paper, both Aurora feature extraction method that employs noise reduction 2-state Wiener filter and DWFBA method are investigated and used. CMN and MRTCN are applied to static features for channel compensation. Telephone digit speech database released by SITEC is used for recognition experiments with HTK system. Experimental results has shown that Aurora feature is slightly better than MFCC and DWFBA without channel compensation. And when channel compensation is included, Aurora feature is slightly better than DWFBA with MRTCN.

  • PDF

주성분 분석 로딩 벡터 기반 비지도 변수 선택 기법 (Unsupervised Feature Selection Method Based on Principal Component Loading Vectors)

  • 박영준;김성범
    • 대한산업공학회지
    • /
    • 제40권3호
    • /
    • pp.275-282
    • /
    • 2014
  • One of the most widely used methods for dimensionality reduction is principal component analysis (PCA). However, the reduced dimensions from PCA do not provide a clear interpretation with respect to the original features because they are linear combinations of a large number of original features. This interpretation problem can be overcome by feature selection approaches that identifying the best subset of given features. In this study, we propose an unsupervised feature selection method based on the geometrical information of PCA loading vectors. Experimental results from a simulation study demonstrated the efficiency and usefulness of the proposed method.

A Study on the Optimal Mahalanobis Distance for Speech Recognition

  • Lee, Chang-Young
    • 음성과학
    • /
    • 제13권4호
    • /
    • pp.177-186
    • /
    • 2006
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.

  • PDF

신경망의 스펙트럼 분석기를 이용한 패턴 인식 (Pattern Recognition Using Spectrum Analyzer and Neural Network)

  • 김남익;한수환;전도홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.211-214
    • /
    • 1996
  • This paper propose a method for pattern recogniton using spectrum analyzer and fuzzy ARTMAP. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These Spectral feature vectors are invariant to shape translation, rotation, and scale transformations. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments include 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the ion problems of noisv shapes.

  • PDF

A Classification Method Using Data Reduction

  • Uhm, Daiho;Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Data reduction has been used widely in data mining for convenient analysis. Principal component analysis (PCA) and factor analysis (FA) methods are popular techniques. The PCA and FA reduce the number of variables to avoid the curse of dimensionality. The curse of dimensionality is to increase the computing time exponentially in proportion to the number of variables. So, many methods have been published for dimension reduction. Also, data augmentation is another approach to analyze data efficiently. Support vector machine (SVM) algorithm is a representative technique for dimension augmentation. The SVM maps original data to a feature space with high dimension to get the optimal decision plane. Both data reduction and augmentation have been used to solve diverse problems in data analysis. In this paper, we compare the strengths and weaknesses of dimension reduction and augmentation for classification and propose a classification method using data reduction for classification. We will carry out experiments for comparative studies to verify the performance of this research.

고차원 데이터의 분류를 위한 서포트 벡터 머신을 이용한 피처 감소 기법 (Feature reduction for classifying high dimensional data sets using support vector machine)

  • 고석하;이현주
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.877-878
    • /
    • 2008
  • We suggest a feature reduction method to classify mouse function data sets, which integrate several biological data sets represented as high dimensional vectors. To increase classification accuracy and decrease computational overhead, it is important to reduce the dimension of features. To do this, we employed Hybrid Huberized Support Vector Machine with kernels used for a kernel logistic regression method. When compared to support vector machine, this a pproach shows the better accuracy with useful features for each mouse function.

  • PDF

Effects of Experience on the Production of English Unstressed Vowels

  • 이보림
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.47-66
    • /
    • 2006
  • This study examined the effect of English-language experience on Korean- and Japanese-English late learners' production of English unstressed vowels in terms of four acoustic phonetic features: F0, duration, intensity and vowel reduction. The learners manifested some improvement with experience. The native-like attainment of a phonetic feature, however, was related to the phonological status of that feature in the speakers' native language. The results suggest that the extent to which the non-native speakers' production of English unstressed vowels improved with English-language experience varied as a function of their native language background.

  • PDF

PCA-SVM 기법을 이용한 차량의 색상 인식 (PCA-SVM Based Vehicle Color Recognition)

  • 박선미;김구진
    • 정보처리학회논문지B
    • /
    • 제15B권4호
    • /
    • pp.285-292
    • /
    • 2008
  • 색상 히스토그램은 영상의 색상 특징을 표현하기 위한 특징 벡터로 빈번히 사용되지만, 고차원의 특징 벡터를 생성하므로 효율성의 면에서 한계점을 갖고 있다. 본 논문에서는 주어진 차량 영상의 색상 히스토그램에 PCA (principal components analysis) 기법을 적용하여 특징 벡터의 차원을 축소시키는 방법을 제안한다. 차원이 축소된 특징 벡터들에 대해서는 SVM (support vector machine) 기법을 적용하여 차량 색상을 인식하기 위해 사용한다. 특징 벡터의 차원을 1/32로 축소한 결과, 차원이 축소되기 이전의 특징 벡터와 비교하여 약 1.42%의 미소한 차이로 색상 인식 성공률이 감소하였다. 또한, 색상 인식의 수행 시간은 1/31로 단축됨으로써 효율적으로 색상 인식을 수행할 수 있었다.

모듈식 프레스 다이 설계 시스템 개발 (Development of a Modular Design System for Press Die)

  • 박홍석;정진형
    • 한국CDE학회논문집
    • /
    • 제12권3호
    • /
    • pp.182-192
    • /
    • 2007
  • The reduction of product development time is exposed to the competitive pressure due to shortened product-and production technology lifecycles as well as increasingly dynamic markets. Specially in automobile companies, that is of major importance for designing die because it is a bottleneck process in the development of a new car. To improve this conventional design process, this paper describes how to design it fast and flexibly. This was done by a modular method using standard template and a feature and knowledge based design method along the design process.

객체검출을 위한 빠르고 효율적인 Haar-Like 피쳐 선택 알고리즘 (A Fast and Efficient Haar-Like Feature Selection Algorithm for Object Detection)

  • 정병우;박기영;황선영
    • 한국통신학회논문지
    • /
    • 제38A권6호
    • /
    • pp.486-491
    • /
    • 2013
  • 본 논문은 객체검출(object detection)에 사용되는 분류기의 학습을 위한 빠르고 효율적인 Haar-like feature 선택 알고리듬을 제안한다. 기존 AdaBoost를 이용한 Haar-like feature 선택 알고리듬은 학습 샘플들에 대한 피쳐의 에러만을 고려하여 형태적으로 유사하거나 중복되는 피쳐가 선택되는 경우가 많았다. 제안하는 알고리듬은 피쳐의 형태와 피쳐간의 거리로부터 피쳐의 유사도를 계산하고 이미 선택된 피쳐와 유사도가 큰 피쳐들을 피쳐 세트에서 제거하여 빠르고 효율적인 피쳐 선택이 이루어지도록 하였다. FERET 얼굴 데이터베이스를 사용하여 제안된 알고리듬을 사용하여 학습시킨 분류기와 기존 알고리듬을 사용한 분류기의 성능을 비교하였다. 실험 결과 제안한 피쳐 선택 방법을 사용하여 학습시킨 분류기가 기존 방법을 사용한 분류기보다 향상된 성능을 보였으며, 동일한 성능을 갖도록 학습시켰을 경우 분류기의 피쳐 수가 20% 감소하였다.