• Title/Summary/Keyword: feature reduction

Search Result 599, Processing Time 0.025 seconds

Case based Reasoning System with Two Dimensional Reduction Technique for Customer Classification Model

  • Kim, Kyoung-Jae;Ahn, Hyun-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.383-386
    • /
    • 2005
  • This study proposes a case based reasoning system with two dimensional reduction techniques. In this study, vertical and horizontal dimensions of the research data are reduced through hybrid feature and instance selection process using genetic algorithms. We applied the proposed model to customer classification model which utilizes customers' demographic characteristics as inputs to predict their buying behavior for the specific product. Experimental results show that the proposed technique may improve the classification accuracy and outperform various optimized models of typical CBR system.

  • PDF

Balanced Buck-Boost Switching Converter to Reduce Commom-mode Conducted Noise

  • Shoyama, Masahito;Ohba, Masashi;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.139-145
    • /
    • 2002
  • Because conventional switching converters have been usually using unbalanced circuit topologies, parasitice between the drain/collertor of an active switch and frame ground through its heat sink may generate the commom-mode conducted noise. We have proposed a balanced switching converter circuit, whitch is an effective way to reduce the commom-mode converter version of the balanced switching converter was presented and the mechanism of the commom-mode noise reduction was explained using equivalent circuits. This paper extends the concept of the balanced switch converter circuit and presents a buck-boost converter version of the blanced switching converter. The feature of common-mode niose reduction is confirmed by experimental resuits and the mechanisem of the commom-mode niose reduction is explained using equivalent circuits.

Effective Noise Reduction in Mobile Communication Environment using Adaptive Comb Filtering (Adaptive Comb Filtering을 이용한 이동 통신 환경에서의 효과적인 잡음 제거)

  • Park Jeong-Sik;Jung Gue-Jun;Oh Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.203-206
    • /
    • 2003
  • In this paper, we employ the adaptive comb filtering for effective noise reduction in mobile communication environment. Adaptive comb filtering is a well- known method for noise reduction, but requires the correct pitch period and must be applied just in voiced speech frames. To satisfy these requirements we use two kinds of information extracted from speech packets, one of which is the pitch period information measured precisely by a speech coder and the other is the frame rate information related to a decision on speech or silence frame. Experiments on speech recognition system confirm the efficiency of this method. Feature parameters employing this method give superior performance in noise environment to those extracted directly from output speech.

  • PDF

Selective Data Reduction in Gas Chromatography/Infrared Spectrometry

  • Pyo, Dong Jin;Sin, Hyeon Du
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.488-492
    • /
    • 2001
  • As gas chromatography/infrared spectrometry (GC/IR) becomes routinely avaliable, methods must be developed to deal with the large amount of data produced. We demonstrate computer methods that quickly search through a large data file, locating thos e spectra that display a spectral feature of interest. Based on a modified library search routine, these selective data reduction methods retrieve all or nearly all of the compounds of interest, while rejecting the vast majority of unrelated compounds. To overcome the shifting problem of IR spectra, a search method of moving the average pattern was designed. In this moving pattern search, the average pattern of a particular functional group was not held stationary, but was allowed to be moved a little bit right and left.

Speckle Noise Reduction with Morphological Adaptive Median Filtering Based on Edge Preservation

  • Jung, Eun Suk;Ryu, Conan K.R.;Hur, Chang Wu;Sun, Mingui
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.329-332
    • /
    • 2009
  • Speckle noise reduction for ultrasound CT image using morphological adaptive median filtering based on edge preservation is presented in this paper. Speckle noise is multiplicative feature and causes ultrasound image to degrade widely from transducer. An input image is classified into edge region and homogeneous region in preprocessing. The speckle is reduced by morphological operation on the 2D gray scale by using convolution and correlation, and edges are preserved. The adaptive median is processed to reduce an impulse noise. As the result the proposed method enhances the image to about 20% in comparison with Winer filter by Edge Preservation Index and PSNR.

  • PDF

Defect Severity-based Dimension Reduction Model using PCA (PCA를 적용한 결함 심각도 기반 차원 축소 모델)

  • Kwon, Ki Tae;Lee, Na-Young
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.1
    • /
    • pp.79-86
    • /
    • 2019
  • Software dimension reduction identifies the commonality of elements and extracts important feature elements. So it reduces complexity by simplify and solves multi-collinearity problems. And it reduces redundancy by performing redundancy and noise detection. In this study, we proposed defect severity-based dimension reduction model. Proposed model is applied defect severity-based NASA dataset. And it is verified the number of dimensions in the column that affect the severity of the defect. Then it is compares and analyzes the dimensions of the data before and after reduction. In this study experiment result, the number of dimensions of PC4's dataset is 2 to 3. It was possible to reduce the dimension.

A Comparative Study of Feature Selection Methods for Korean Web Documents Clustering (한글 웹 문서 클러스터링 성능향상을 위한 자질선정 기법 비교 연구)

  • Kim Young-Gi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2005
  • This Paper is a comparative study of feature selection methods for Korean web documents clustering. First, we focused on how the term feature and the co-link of web documents affect clustering performance. We clustered web documents by native term feature, co-link and both, and compared the output results with the originally allocated category. And we selected term features for each category using $X^2$, Information Gain (IG), and Mutual Information (MI) from training documents, and applied these features to other experimental documents. In addition we suggested a new method named Max Feature Selection, which selects terms that have the maximum count for a category in each experimental document, and applied $X^2$ (or MI or IG) values to each term instead of term frequency of documents, and clustered them. In the results, $X^2$ shows a better performance than IG or MI, but the difference appears to be slight. But when we applied the Max Feature Selection Method, the clustering Performance improved notably. Max Feature Selection is a simple but effective means of feature space reduction and shows powerful performance for Korean web document clustering.

Application of Dimensional Expansion and Reduction to Earthquake Catalog for Machine Learning Analysis (기계학습 분석을 위한 차원 확장과 차원 축소가 적용된 지진 카탈로그)

  • Jang, Jinsu;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.377-388
    • /
    • 2022
  • Recently, several studies have utilized machine learning to efficiently and accurately analyze seismic data that are exponentially increasing. In this study, we expand earthquake information such as occurrence time, hypocentral location, and magnitude to produce a dataset for applying to machine learning, reducing the dimension of the expended data into dominant features through principal component analysis. The dimensional extended data comprises statistics of the earthquake information from the Global Centroid Moment Tensor catalog containing 36,699 seismic events. We perform data preprocessing using standard and max-min scaling and extract dominant features with principal components analysis from the scaled dataset. The scaling methods significantly reduced the deviation of feature values caused by different units. Among them, the standard scaling method transforms the median of each feature with a smaller deviation than other scaling methods. The six principal components extracted from the non-scaled dataset explain 99% of the original data. The sixteen principal components from the datasets, which are applied with standardization or max-min scaling, reconstruct 98% of the original datasets. These results indicate that more principal components are needed to preserve original data information with even distributed feature values. We propose a data processing method for efficient and accurate machine learning model to analyze the relationship between seismic data and seismic behavior.

EEG Dimensional Reduction with Stack AutoEncoder for Emotional Recognition using LSTM/RNN (LSTM/RNN을 사용한 감정인식을 위한 스택 오토 인코더로 EEG 차원 감소)

  • Aliyu, Ibrahim;Lim, Chang-Gyoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.717-724
    • /
    • 2020
  • Due to the important role played by emotion in human interaction, affective computing is dedicated in trying to understand and regulate emotion through human-aware artificial intelligence. By understanding, emotion mental diseases such as depression, autism, attention deficit hyperactivity disorder, and game addiction will be better managed as they are all associated with emotion. Various studies for emotion recognition have been conducted to solve these problems. In applying machine learning for the emotion recognition, the efforts to reduce the complexity of the algorithm and improve the accuracy are required. In this paper, we investigate emotion Electroencephalogram (EEG) feature reduction and classification using Stack AutoEncoder (SAE) and Long-Short-Term-Memory/Recurrent Neural Networks (LSTM/RNN) classification respectively. The proposed method reduced the complexity of the model and significantly enhance the performance of the classifiers.

The Design and Practice of Disaster Response RL Environment Using Dimension Reduction Method for Training Performance Enhancement (학습 성능 향상을 위한 차원 축소 기법 기반 재난 시뮬레이션 강화학습 환경 구성 및 활용)

  • Yeo, Sangho;Lee, Seungjun;Oh, Sangyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.263-270
    • /
    • 2021
  • Reinforcement learning(RL) is the method to find an optimal policy through training. and it is one of popular methods for solving lifesaving and disaster response problems effectively. However, the conventional reinforcement learning method for disaster response utilizes either simple environment such as. grid and graph or a self-developed environment that are hard to verify the practical effectiveness. In this paper, we propose the design of a disaster response RL environment which utilizes the detailed property information of the disaster simulation in order to utilize the reinforcement learning method in the real world. For the RL environment, we design and build the reinforcement learning communication as well as the interface between the RL agent and the disaster simulation. Also, we apply the dimension reduction method for converting non-image feature vectors into image format which is effectively utilized with convolution layer to utilize the high-dimensional and detailed property of the disaster simulation. To verify the effectiveness of our proposed method, we conducted empirical evaluations and it shows that our proposed method outperformed conventional methods in the building fire damage.