• Title/Summary/Keyword: feature point matching

Search Result 197, Processing Time 0.024 seconds

A study on the real time obstacle recognition by scanned line image (스캔라인 연속영상을 이용한 실시간 장애물 인식에 관한 연구)

  • Cheung, Sheung-Youb;Oh, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1551-1560
    • /
    • 1997
  • This study is devoted to the detection of the 3-dimensional point obstacles on the plane by using accumulated scan line images. The proposed accumulating only one scan line allow to process image at real time. And the change of motion of the feature in image is small because of the short time between image frames, so it does not take much time to track features. To obtain recursive optimal obstacles position and robot motion along to the motion of camera, Kalman filter algorithm is used. After using Kalman filter in case of the fixed environment, 3-dimensional obstacles point map is obtained. The position and motion of moving obstacles can also be obtained by pre-segmentation. Finally, to solve the stereo ambiguity problem from multiple matches, the camera motion is actively used to discard mis-matched features. To get relative distance of obstacles from camera, parallel stereo camera setup is used. In order to evaluate the proposed algorithm, experiments are carried out by a small test vehicle.

A Robust Algorithm for Tracking Feature Points with Incomplete Trajectories (불완전한 궤적을 고려한 강건한 특징점 추적 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2000
  • The trajectories of feature points can be defined by the correspondences between points in consecutive frames. The correspondence problem is known to be difficult to solve because false positives and false negatives almost always exist in real image sequences. In this paper, we propose a robust feature tracking algorithm considering incomplete trajectories such as entering and/or vanishing trajectories. The trajectories of feature points are determined by calculating the matching measure, which is defined as the minimum weighted Euclidean distance between two feature points. The weights are automatically updated in order to properly reflect the motion characteristics. We solve the correspondence problem as an optimal graph search problem, considering that the existence of false feature points may have serious effect on the correspondence search. The proposed algorithm finds a local optimal correspondence so that the effect of false feature point can be minimized in the decision process. The time complexity of the proposed graph search algorithm is given by O(mn) in the best case and O($m^2n$) in the worst case, where m and n arc the number of feature points in two consecutive frames. By considering false feature points and by properly reflecting motion characteristics, the proposed algorithm can find trajectories correctly and robustly, which has been shown by experimental results.

  • PDF

Image alignment method based on CUDA SURF for multi-spectral machine vision application (다중 스펙트럼 머신비전 응용을 위한 CUDA SURF 기반의 영상 정렬 기법)

  • Maeng, Hyung-Yul;Kim, Jin-Hyung;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1041-1051
    • /
    • 2014
  • In this paper, we propose a new image alignment technique based on CUDA SURF in order to solve the initial image alignment problem that frequently occurs in machine vision applications. Machine vision systems using multi-spectral images have recently become more common for solving various decision problems that cannot be performed by the human vision system. These machine vision systems mostly use markers for the initial image alignment. However, there are some applications where the markers cannot be used and the alignment techniques have to be changed whenever their markers are changed. In order to solve these problems, we propose a new image alignment method for multi-spectral machine vision applications based on SURF extracting image features without depending on markers. In this paper, we propose an image alignment method that obtains a sufficient number of feature points from multi-spectral images using SURF and removes outlier iteratively based on a least squares method. We further propose an effective preliminary scheme for removing mismatched feature point pairs that may affect the overall performance of the alignment. In addition, we reduce the execution time by implementing the proposed method using CUDA based on GPGPU in order to guarantee real-time operation. Simulation results show that the proposed method is able to align images effectively in applications where markers cannot be used.

Study of the Haar Wavelet Feature Detector for Image Retrieval (이미지 검색을 위한 Haar 웨이블릿 특징 검출자에 대한 연구)

  • Peng, Shao-Hu;Kim, Hyun-Soo;Muzzammil, Khairul;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.160-170
    • /
    • 2010
  • This paper proposes a Haar Wavelet Feature Detector (HWFD) based on the Haar wavelet transform and average box filter. By decomposing the original image using the Haar wavelet transform, the proposed detector obtains the variance information of the image, making it possible to extract more distinctive features from the original image. For detection of interest points that represent the regions whose variance is the highest among their neighbor regions, we apply the average box filter to evaluate the local variance information and use the integral image technique for fast computation. Due to utilization of the Haar wavelet transform and the average box filter, the proposed detector is robust to illumination change, scale change, and rotation of the image. Experimental results show that even though the proposed method detects fewer interest points, it achieves higher repeatability, higher efficiency and higher matching accuracy compared with the DoG detector and Harris corner detector.

Fixed-Point Modeling and Performance Analysis of a SIFT Keypoints Localization Algorithm for SoC Hardware Design (SoC 하드웨어 설계를 위한 SIFT 특징점 위치 결정 알고리즘의 고정 소수점 모델링 및 성능 분석)

  • Park, Chan-Ill;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.49-59
    • /
    • 2008
  • SIFT(Scale Invariant Feature Transform) is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vortices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3-D image constructions, and its most computation-intensive stage is a keypoint localization. In this paper, we develope a fixed-point model of the keypoint localization and propose its efficient hardware architecture for embedded applications. The bit-length of key variables are determined based on two performance measures: localization accuracy and error rate. Comparing with the original algorithm (implemented in Matlab), the accuracy and error rate of the proposed fixed point model are 93.57% and 2.72% respectively. In addition, we found that most of missing keypoints appeared at the edges of an object which are not very important in the case of keypoints matching. We estimate that the hardware implementation will give processing speed of $10{\sim}15\;frame/sec$, while its fixed point implementation on Pentium Core2Duo (2.13 GHz) and ARM9 (400 MHz) takes 10 seconds and one hour each to process a frame.

Design of Port Security System Using Deep Learning and Object Features (딥러닝과 객체 특징점을 활용한 항만 보안시스템 설계)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.50-53
    • /
    • 2022
  • Recently, there have been cases in which counterfeit foreign ships have entered and left domestic ports several times. Vessels have a ship-specific serial number given by the International Maritime Organization (IMO) to identify the vessel, and IMO marking is mandatory on all ships built since 2004. In the case of airports and ports, which are representative logistics platforms, a security system is essential, but it is difficult to establish a security system at a port and there are many blind spots, which can cause security problems due to insufficient security systems. In this paper, a port security system is designed using deep learning object recognition and OpenCV. The security system process extracts the IMO number of the ship after recognizing the object when entering the ship, determines whether it is the same ship through feature point matching for ships with entry records, and stores the ship image and IMO number in the entry/exit DB for the first arrival vessel. Through the system of this paper, port security can be strengthened by improving the efficiency and system of port logistics by increasing the efficiency of port management personnel and reducing incidental costs caused by unauthorized entry.

  • PDF

Image Based Text Matching Using Local Crowdedness and Hausdorff Distance (지역 밀집도 및 Hausdorff 거리를 이용한 영상기반 텍스트 매칭)

  • Son, Hwa-Jeong;Kim, Ji-Soo;Park, Mi-Seon;Yoo, Jae-Myeong;Kim, Soo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.10
    • /
    • pp.134-142
    • /
    • 2006
  • In this paper, we investigate a Hausdorff distance, which is used for the measurement of image similarity, to see whether it is also effective for document retrieval. The proposed method uses a local crowdedness and a Hausdorff distance to locate text images by determining whether a pair of images scanned at different time comes from the same text or not. To reduce the processing time, which is one of the disadvantages of a Hausdorff distance algorithm, we adopt a local crowdedness for feature point extraction. We apply the proposed method to 190 pairs of the same class and 190 pairs of the different class collected from postal envelop images. The results show that the modified Hausdorff distance proposed in this paper performed well in locating the tort region and calculating the degree of similarity between two images. An improvement of accuracy by 2.7% and 9.0% has been obtained, compared to a binary correlation method and the original Hausdorff distance method, respectively.

  • PDF

Vision-based Camera Localization using DEM and Mountain Image (DEM과 산영상을 이용한 비전기반 카메라 위치인식)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.177-186
    • /
    • 2005
  • In this Paper. we propose vision-based camera localization technique using 3D information which is created by mapping of DEM and mountain image. Typically, image features for localization have drawbacks, it is variable to camera viewpoint and after time information quantify increases . In this paper, we extract invariance features of geometry which is irrelevant to camera viewpoint and estimate camera extrinsic Parameter through accurate corresponding Points matching by Proposed similarity evaluation function and Graham search method we also propose 3D information creation method by using graphic theory and visual clues, The Proposed method has the three following stages; point features invariance vector extraction, 3D information creation, camera extrinsic Parameter estimation. In the experiments, we compare and analyse the proposed method with existing methods to demonstrate the superiority of the proposed methods.

  • PDF

Fractal Depth Map Sequence Coding Algorithm with Motion-vector-field-based Motion Estimation

  • Zhu, Shiping;Zhao, Dongyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.242-259
    • /
    • 2015
  • Three-dimensional video coding is one of the main challenges restricting the widespread applications of 3D video and free viewpoint video. In this paper, a novel fractal coding algorithm with motion-vector-field-based motion estimation for depth map sequence is proposed. We firstly add pre-search restriction to rule the improper domain blocks out of the matching search process so that the number of blocks involved in the search process can be restricted to a smaller size. Some improvements for motion estimation including initial search point prediction, threshold transition condition and early termination condition are made based on the feature of fractal coding. The motion-vector-field-based adaptive hexagon search algorithm on the basis of center-biased distribution characteristics of depth motion vector is proposed to accelerate the search. Experimental results show that the proposed algorithm can reach optimum levels of quality and save the coding time. The PSNR of synthesized view is increased by 0.56 dB with 36.97% bit rate decrease on average compared with H.264 Full Search. And the depth encoding time is saved by up to 66.47%. Moreover, the proposed fractal depth map sequence codec outperforms the recent alternative codecs by improving the H.264/AVC, especially in much bitrate saving and encoding time reduction.

Fingerprint Recognition System for On-line User Authentication (온라인 사용자 인증을 위한 지문인식 시스템)

  • Han, Sang-Hoon;Lee, Ho;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.283-292
    • /
    • 2006
  • Interest about a latest security connection technology rises, and try to overcome security vulnerability Certification about on-line user methods through fingerprint that is biometries information apply. In this study, designs and implements fingerprint recognition system that is invariant to rotation by fingerprint recognition system for certification about on-line user. Proposed method focused in matching process through pre-process of fingerprint image, feature point extraction. Improved process time and correct recognition rate in fingerprint recognition system that is invariant to rotation presented in existing study. Also, improved noise, distortion problems that happen in preprocess of existing study applying directional Laplacian filter.

  • PDF