• Title/Summary/Keyword: feature model validation

Search Result 111, Processing Time 0.025 seconds

Management strategy through analysis of habitat suitability for otter (Lutra lutra) in Hwangguji Stream (황구지천 내 수달(Lutra lutra) 서식지 적합성 분석을 통한 관리 전략 제안)

  • Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 2024
  • Otters, designated as Class I endangered wildlife due to population declines resulting from urban development and stream burial, have seen increased appearances in freshwater environments since the nationwide ban on stream filling in 2020 and the implementation of urban stream restoration projects. There is a pressing need for scientific and strategic conservation measures for otters, an umbrella and vulnerable species in aquatic ecosystems. Therefore, this study predicts potential otter habitats using the species distribution model MaxEnt, focusing on Hwangguji Stream in Suwon, and proposes conservation strategies. Otter signs were surveyed over three years from 2019 to 2021 with citizen scientists, serving as presence data for the model. The model's outcomes were enhanced by analyzing 'river nature map' as a boundary. MaxEnt compared the performance of 60 combinations of feature classes and regularization multipliers to prevent model complexity and overfitting. Additionally, unmanned sensor cameras observed otter density for model validation, confirming correlations with the species distribution model results. The 'LQ-5.0' parameter combination showed the highest explanatory power with an AUC of 0.853. The model indicated that the 'adjacent land use' variable accounted for 31.5% of the explanation, with a preference for areas around cultivated lands. Otters were found to prefer shelter rates of 10-30% in riparian forests within 2 km of bridges. Higher otter densities observed by unmanned sensors correlated with increasing model values. Based on these results, the study suggests three conservation strategies: establishing stable buffer zones to enhance ecological connectivity, improving water quality against non-point source pollution, and raising public awareness. The study provides a scientific basis for potential otter habitat management, effective conservation through governance linking local governments, sustainable biodiversity goals, and civil organizations.

A Node2Vec-Based Gene Expression Image Representation Method for Effectively Predicting Cancer Prognosis (암 예후를 효과적으로 예측하기 위한 Node2Vec 기반의 유전자 발현량 이미지 표현기법)

  • Choi, Jonghwan;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.397-402
    • /
    • 2019
  • Accurately predicting cancer prognosis to provide appropriate treatment strategies for patients is one of the critical challenges in bioinformatics. Many researches have suggested machine learning models to predict patients' outcomes based on their gene expression data. Gene expression data is high-dimensional numerical data containing about 17,000 genes, so traditional researches used feature selection or dimensionality reduction approaches to elevate the performance of prognostic prediction models. These approaches, however, have an issue of making it difficult for the predictive models to grasp any biological interaction between the selected genes because feature selection and model training stages are performed independently. In this paper, we propose a novel two-dimensional image formatting approach for gene expression data to achieve feature selection and prognostic prediction effectively. Node2Vec is exploited to integrate biological interaction network and gene expression data and a convolutional neural network learns the integrated two-dimensional gene expression image data and predicts cancer prognosis. We evaluated our proposed model through double cross-validation and confirmed superior prognostic prediction accuracy to traditional machine learning models based on raw gene expression data. As our proposed approach is able to improve prediction models without loss of information caused by feature selection steps, we expect this will contribute to development of personalized medicine.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Proposal of a Convolutional Neural Network Model for the Classification of Cardiomegaly in Chest X-ray Images (흉부 X-선 영상에서 심장비대증 분류를 위한 합성곱 신경망 모델 제안)

  • Kim, Min-Jeong;Kim, Jung-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.613-620
    • /
    • 2021
  • The purpose of this study is to propose a convolutional neural network model that can classify normal and abnormal(cardiomegaly) in chest X-ray images. The training data and test data used in this paper were used by acquiring chest X-ray images of patients diagnosed with normal and abnormal(cardiomegaly). Using the proposed deep learning model, we classified normal and abnormal(cardiomegaly) images and verified the classification performance. When using the proposed model, the classification accuracy of normal and abnormal(cardiomegaly) was 99.88%. Validation of classification performance using normal images as test data showed 95%, 100%, 90%, and 96% in accuracy, precision, recall, and F1 score. Validation of classification performance using abnormal(cardiomegaly) images as test data showed 95%, 92%, 100%, and 96% in accuracy, precision, recall, and F1 score. Our classification results show that the proposed convolutional neural network model shows very good performance in feature extraction and classification of chest X-ray images. The convolutional neural network model proposed in this paper is expected to show useful results for disease classification of chest X-ray images, and further study of CNN models are needed focusing on the features of medical images.

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

Development of a Classification Model for Driver's Drowsiness and Waking Status Using Heart Rate Variability and Respiratory Features

  • Kim, Sungho;Choi, Booyong;Cho, Taehwan;Lee, Yongkyun;Koo, Hyojin;Kim, Dongsoo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.371-381
    • /
    • 2016
  • Objective:This study aims to evaluate the features of heart rate variability (HRV) and respiratory signals as indices for a driver's drowsiness and waking status in order to develop the classification model for a driver's drowsiness and waking status using those features. Background: Driver's drowsiness is one of the major causal factors for traffic accidents. This study hypothesized that the application of combined bio-signals to monitor the alertness level of drivers would improve the effectiveness of the classification techniques of driver's drowsiness. Method: The features of three heart rate variability (HRV) measurements including low frequency (LF), high frequency (HF), and LF/HF ratio and two respiratory measurements including peak and rate were acquired by the monotonous car driving simulation experiments using the photoplethysmogram (PPG) and respiration sensors. The experiments were repeated a total of 50 times on five healthy male participants in their 20s to 50s. The classification model was developed by selecting the optimal measurements, applying a binary logistic regression method and performing 3-fold cross validation. Results: The power of LF, HF, and LF/HF ratio, and the respiration peak of drowsiness status were reduced by 38%, 22%, 31%, and 7%, compared to those of waking status, while respiration rate was increased by 3%. The classification sensitivity of the model using both HRV and respiratory features (91.4%) was improved, compared to that of the model using only HRV feature (89.8%) and that using only respiratory feature (83.6%). Conclusion: This study suggests that the classification of driver's drowsiness and waking status may be improved by utilizing a combination of HRV and respiratory features. Application: The results of this study can be applied to the development of driver's drowsiness prevention systems.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

Deep learning-based AI constitutive modeling for sandstone and mudstone under cyclic loading conditions

  • Luyuan Wu;Meng Li;Jianwei Zhang;Zifa Wang;Xiaohui Yang;Hanliang Bian
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • Rocks undergoing repeated loading and unloading over an extended period, such as due to earthquakes, human excavation, and blasting, may result in the gradual accumulation of stress and deformation within the rock mass, eventually reaching an unstable state. In this study, a CNN-CCM is proposed to address the mechanical behavior. The structure and hyperparameters of CNN-CCM include Conv2D layers × 5; Max pooling2D layers × 4; Dense layers × 4; learning rate=0.001; Epoch=50; Batch size=64; Dropout=0.5. Training and validation data for deep learning include 71 rock samples and 122,152 data points. The AI Rock Constitutive Model learned by CNN-CCM can predict strain values(ε1) using Mass (M), Axial stress (σ1), Density (ρ), Cyclic number (N), Confining pressure (σ3), and Young's modulus (E). Five evaluation indicators R2, MAPE, RMSE, MSE, and MAE yield respective values of 0.929, 16.44%, 0.954, 0.913, and 0.542, illustrating good predictive performance and generalization ability of model. Finally, interpreting the AI Rock Constitutive Model using the SHAP explaining method reveals that feature importance follows the order N > M > σ1 > E > ρ > σ3.Positive SHAP values indicate positive effects on predicting strain ε1 for N, M, σ1, and σ3, while negative SHAP values have negative effects. For E, a positive value has a negative effect on predicting strain ε1, consistent with the influence patterns of conventional physical rock constitutive equations. The present study offers a novel approach to the investigation of the mechanical constitutive model of rocks under cyclic loading and unloading conditions.

Feature Extraction to Detect Hoax Articles (낚시성 인터넷 신문기사 검출을 위한 특징 추출)

  • Heo, Seong-Wan;Sohn, Kyung-Ah
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1210-1215
    • /
    • 2016
  • Readership of online newspapers has grown with the proliferation of smart devices. However, fierce competition between Internet newspaper companies has resulted in a large increase in the number of hoax articles. Hoax articles are those where the title does not convey the content of the main story, and this gives readers the wrong information about the contents. We note that the hoax articles have certain characteristics, such as unnecessary celebrity quotations, mismatch in the title and content, or incomplete sentences. Based on these, we extract and validate features to identify hoax articles. We build a large-scale training dataset by analyzing text keywords in replies to articles and thus extracted five effective features. We evaluate the performance of the support vector machine classifier on the extracted features, and a 92% accuracy is observed in our validation set. In addition, we also present a selective bigram model to measure the consistency between the title and content, which can be effectively used to analyze short texts in general.