• Title/Summary/Keyword: feature model validation

Search Result 111, Processing Time 0.025 seconds

Quality Driven Approach for Product Line Architecture Customization in Patient Navigation Program Software Product Line

  • Ashari, Afifah M.;Abd Halim, Shahliza;Jawawi, Dayang N.A.;Suvelayutnan, Ushananthiny;Isa, Mohd Adham
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2455-2475
    • /
    • 2021
  • Patient Navigation Program (PNP) is considered as an important implementation of health care systems that can assist in patient's treatment. Due to the feasibility of PNP implementation, a systematic reuse is needed for a wide adoption of PNP computerized system. SPL is one of the promising systematic reuse approaches for creating a reusable architecture to enabled reuse in several similar applications of PNP systems which has its own variations with other applications. However, stakeholder decision making which result from the imprecise, uncertain, and subjective nature of architecture selection based on quality attributes (QA) further hinders the development of the product line architecture. Therefore, this study aims to propose a quality-driven approach using Multi-Criteria Decision Analysis (MCDA) techniques for Software Product Line Architecture (SPLA) to have an objective selection based on the QA of stakeholders in the domain of PNP. There are two steps proposed to this approach. First, a clear representation of quality is proposed by extending feature model (FM) with QA feature to determine the QA in the early phase of architecture selection. Second, MCDA techniques were applied for architecture selection based on objective preference for certain QA in the domain of PNP. The result of the proposed approach is the implementation of the PNP system with SPLA that had been selected using MCDA techniques. Evaluation for the approach is done by checking the approach's applicability in a case study and stakeholder validation. Evaluation on ease of use and usefulness of the approach with selected stakeholders have shown positive responses. The evaluation results proved that the proposed approach assisted in the implementation of PNP systems.

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Mohammed, Adil Hussein;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Cold sensitivity classification using facial image based on convolutional neural network

  • lkoo Ahn;Younghwa Baek;Kwang-Ho Bae;Bok-Nam Seo;Kyoungsik Jung;Siwoo Lee
    • The Journal of Korean Medicine
    • /
    • v.44 no.4
    • /
    • pp.136-149
    • /
    • 2023
  • Objectives: Facial diagnosis is an important part of clinical diagnosis in traditional East Asian Medicine. In this paper, we proposed a model to quantitatively classify cold sensitivity using a fully automated facial image analysis system. Methods: We investigated cold sensitivity in 452 subjects. Cold sensitivity was determined using a questionnaire and the Cold Pattern Score (CPS) was used for analysis. Subjects with a CPS score below the first quartile (low CPS group) belonged to the cold non-sensitivity group, and subjects with a CPS score above the third quartile (high CPS group) belonged to the cold sensitivity group. After splitting the facial images into train/validation/test sets, the train and validation set were input into a convolutional neural network to learn the model, and then the classification accuracy was calculated for the test set. Results: The classification accuracy of the low CPS group and high CPS group using facial images in all subjects was 76.17%. The classification accuracy by sex was 69.91% for female and 62.86% for male. It is presumed that the deep learning model used facial color or facial shape to classify the low CPS group and the high CPS group, but it is difficult to specifically determine which feature was more important. Conclusions: The experimental results of this study showed that the low CPS group and the high CPS group can be classified with a modest level of accuracy using only facial images. There was a need to develop more advanced models to increase classification accuracy.

Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population

  • Ryu, Seunghyong;Lee, Hyeongrae;Lee, Dong-Kyun;Park, Kyeongwoo
    • Psychiatry investigation
    • /
    • v.15 no.11
    • /
    • pp.1030-1036
    • /
    • 2018
  • Objective In this study, we aimed to develop a model predicting individuals with suicide ideation within a general population using a machine learning algorithm. Methods Among 35,116 individuals aged over 19 years from the Korea National Health & Nutrition Examination Survey, we selected 11,628 individuals via random down-sampling. This included 5,814 suicide ideators and the same number of non-suicide ideators. We randomly assigned the subjects to a training set (n=10,466) and a test set (n=1,162). In the training set, a random forest model was trained with 15 features selected with recursive feature elimination via 10-fold cross validation. Subsequently, the fitted model was used to predict suicide ideators in the test set and among the total of 35,116 subjects. All analyses were conducted in R. Results The prediction model achieved a good performance [area under receiver operating characteristic curve (AUC)=0.85] in the test set and predicted suicide ideators among the total samples with an accuracy of 0.821, sensitivity of 0.836, and specificity of 0.807. Conclusion This study shows the possibility that a machine learning approach can enable screening for suicide risk in the general population. Further work is warranted to increase the accuracy of prediction.

Investigating the Performance of Bayesian-based Feature Selection and Classification Approach to Social Media Sentiment Analysis (소셜미디어 감성분석을 위한 베이지안 속성 선택과 분류에 대한 연구)

  • Chang Min Kang;Kyun Sun Eo;Kun Chang Lee
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.1-19
    • /
    • 2022
  • Social media-based communication has become crucial part of our personal and official lives. Therefore, it is no surprise that social media sentiment analysis has emerged an important way of detecting potential customers' sentiment trends for all kinds of companies. However, social media sentiment analysis suffers from huge number of sentiment features obtained in the process of conducting the sentiment analysis. In this sense, this study proposes a novel method by using Bayesian Network. In this model MBFS (Markov Blanket-based Feature Selection) is used to reduce the number of sentiment features. To show the validity of our proposed model, we utilized online review data from Yelp, a famous social media about restaurant, bars, beauty salons evaluation and recommendation. We used a number of benchmarking feature selection methods like correlation-based feature selection, information gain, and gain ratio. A number of machine learning classifiers were also used for our validation tasks, like TAN, NBN, Sons & Spouses BN (Bayesian Network), Augmented Markov Blanket. Furthermore, we conducted Bayesian Network-based what-if analysis to see how the knowledge map between target node and related explanatory nodes could yield meaningful glimpse into what is going on in sentiments underlying the target dataset.

Pairwise Neural Networks for Predicting Compound-Protein Interaction (약물-표적 단백질 연관관계 예측모델을 위한 쌍 기반 뉴럴네트워크)

  • Lee, Munhwan;Kim, Eunghee;Kim, Hong-Gee
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.4
    • /
    • pp.299-314
    • /
    • 2017
  • Predicting compound-protein interactions in-silico is significant for the drug discovery. In this paper, we propose an scalable machine learning model to predict compound-protein interaction. The key idea of this scalable machine learning model is the architecture of pairwise neural network model and feature embedding method from the raw data, especially for protein. This method automatically extracts the features without additional knowledge of compound and protein. Also, the pairwise architecture elevate the expressiveness and compact dimension of feature by preventing biased learning from occurring due to the dimension and type of features. Through the 5-fold cross validation results on large scale database show that pairwise neural network improves the performance of predicting compound-protein interaction compared to previous prediction models.

Protecting Fingerprint Data for Remote Applications (원격응용에 적합한 지문 정보 보호)

  • Moon, Dae-Sung;Jung, Seung-Hwan;Kim, Tae-Hae;Lee, Han-Sung;Yang, Jong-Won;Choi, Eun-Wha;Seo, Chang-Ho;Chung, Yong-Wha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.6
    • /
    • pp.63-71
    • /
    • 2006
  • In this paper, we propose a secure solution for user authentication by using fingerprint verification on the sensor-client-server model, even with the client that is not necessarily trusted by the sensor holder or the server. To protect possible attacks launched at the untrusted client, our solution makes the fingerprint sensor validate the result computed by the client for the feature extraction. However, the validation should be simple so that the resource-constrained fingerprint sensor can validate it in real-time. To solve this problem, we separate the feature extraction into binarization and minutiae extraction, and assign the time-consuming binarization to the client. After receiving the result of binarization from the client, the sensor conducts a simple validation to check the result, performs the minutiae extraction with the received binary image from the client, and then sends the extracted minutiae to the server. Based on the experimental results, the proposed solution for fingerprint verification can be performed on the sensor-client-server model securely and in real-time with the aid of an untrusted client.

A Study on Validation of OFP for UAV using Auto Code Generation (자동 코드생성을 이용한 무인기용 OFP의 검증에 관한 연구)

  • Cho, Sang-Ook;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.359-366
    • /
    • 2009
  • MATLAB Autocode generation is a feature that converts a block diagram model in Simulink to a c program. Utilizing this function makes MATLAB/Simulink an integrated developing environment, from controller design to implementation. It can reduce development cost and time significantly. However, this automated process requires high reliability on the software, especially the original Simulink block diagram model. And thus, the verification of the codes becomes important. In this study, a UAV flight program which is generated with Simulink is validated and modified according to DO-178B. As a result of applying the procedures, the final program not only satisfied the functional requirement but is also verified with structural point of view with Decision Coverage 93%, Condition Coverage 95% and MC/DC 90%.

Analysis of market share attraction data using LS-SVM (최소제곱 서포트벡터기계를 이용한 시장점유율 자료 분석)

  • Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.879-886
    • /
    • 2009
  • The purpose of this article is to present the application of Least Squares Support Vector Machine in analyzing the existing structure of brand. We estimate the parameters of the Market Share Attraction Model using a non-parametric technique for function estimation called Least Squares Support Vector Machine, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. Estimation by Least Squares Support Vector Machine technique makes it a good candidate for solving the Market Share Attraction Model. To illustrate the performance of the proposed method, we use the car sales data in South Korea's car market.

  • PDF